Spinal Cord Injury and Bladder Dysfunction: New Ideas about an Old Problem (original) (raw)
Related papers
Plasticity in reflex pathways to the lower urinary tract following spinal cord injury
Experimental Neurology, 2012
The lower urinary tract has two main functions, storage and periodic expulsion of urine, that are regulated by a complex neural control system in the brain and lumbosacral spinal cord. This neural system coordinates the activity of two functional units in the lower urinary tract: (1) a reservoir (the urinary bladder) and (2) an outlet (consisting of bladder neck, urethra and striated muscles of the external urethra sphincter). During urine storage the outlet is closed and the bladder is quiescent to maintain a low intravesical pressure. During micturition the outlet relaxes and the bladder contracts to promote efficient release of urine. This reciprocal relationship between bladder and outlet is generated by reflex circuits some of which are under voluntary control. Experimental studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through a coordination center (the pontine micturition center) located in the rostral brainstem. This reflex pathway is in turn modulated by higher centers in the cerebral cortex that are involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary control of voiding as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. However the bladder does not empty efficiently because coordination between the bladder and urethral outlet is lost. Studies in animals indicate that dysfunction of the lower urinary tract after spinal cord injury is dependent in part on plasticity of bladder afferent pathways as well as reorganization of synaptic connections in the spinal cord. Reflex plasticity is associated with changes in the properties of ion channels and electrical excitability of afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and/or the peripheral target organs.
Neurochemistry International, 2008
The purpose of this paper was to simultaneously examine changes in urothelial ATP and NO release in normal and spinal cord injured animals as well as in spinal cord injured animals treated with botulinum toxin type A (BoNT-A). Furthermore we correlated changes in transmitter release with functional changes in bladder contraction frequency, and determined the effects of BoNT-A on bladder efferent nerve function. Normal and spinal cord injured rat bladders were injected on day 0 with either vehicle (saline containing bovine serum albumin) or BoNT-A. On day 2, in vitro neurotransmitter release and bladder strip contractility studies as well as in vivo cystometrographic studies were conducted. Resting ATP release was significantly enhanced following spinal cord injury (i.e. 57% increase, p<0.05) and was unaffected by BoNT-A treatment. SCI increased hypo-osmotic evoked urothelial ATP release by 377% (p<0.05). BoNT-A treatment reduced evoked ATP release in SCI bladders by 83% (p<0.05). In contrast, hypo-osmotic stimulation induced NO release was significantly inhibited following SCI (i.e. 50%, p<0.05) but recovered in SCI rats treated with BoNT-A (i.e. 195% increase in NO release in SCI-BTX treated rats compared to SCI controls, p<0.01). Changes in urothelial transmitter release coincided with a significant decrease in non-voiding bladder contraction frequency (i.e. 71%, p<0.05) in SCI-BTX rats compared to SCI rats. While no difference was measured between neurally evoked contractile amplitude between SCI and SCI-BTX animals, atropine (1µM) inhibited contractile amplitude to a greater extent (i.e. 76%, p<0.05) in the SCI-BTX group compared to the SCI group. We hypothesize that alterations in the ratio of excitatory (i.e. ATP) and inhibitory (i.e. NO) urothelial transmitters promote bladder hyperactivity in rat bladders following SCI that can be reversed, to a large extent, by treatment with BoNT-A.
Deficits in bladder function following spinal cord injury vary depending on the level of the injury
Experimental Neurology, 2010
Loss of bladder function is an important consequence of a spinal cord injury (SCI) but is rarely assessed in animal studies of SCI. Here, we use a simple outcome measure (volume of retained urine) to assess bladder dysfunction over time following moderate contusion injuries at 3 different thoracic levels (T1, T4, or T9) and complete crush injuries (T1 vs T9). The volume of urine retained in the bladder was measured daily for fourteen days post-injury by anesthetizing the animals with isoflurane, expressing the bladder, and weighing the urine. To compare bladder deficits with the degree of impairment of hindlimb motor function, locomotion was assessed using the BBB open field rating scale. Rats with contusions at T4 and T9 exhibited bladder impairments reflected by increased urine retention from 1-12 days post injury. In contrast, rats with contusions at T1 exhibited minimal deficits (smaller volumes of retained urine). Lesion size and overall functional impairment was comparable between groups based on quantitative assessments of lesion area at the epicenter and BBB locomotor scores. Moreover, a sector analysis of sparing of different portions of the white matter revealed no differences in sparing of different funiculi between the groups. Injections of Fluorogold into lumbar segments led to retrograde labeling of a larger number of neurons in the pontine micturition center (PMC) following T1 injury when compared to T4 or T9. Thus, moderate contusion lesions at T1 spare a critical descending pathway able to mediate at least reflex voiding in rats.
International braz j urol, 2010
Purpose: To evaluate the efficacy of botulinum toxin type A injections in the detrusor muscle in patients with spinal cord injury and urinary incontinence due to detrusor overactivity and refractory to anticholinergic agents. Materials and Methods: We prospectively evaluated 22 patients with spinal cord injuries, whose bladders were emptied by intermittent catheterization. All patients had detrusor overactivity and urinary incontinence that proved difficult to treat, despite using high doses of two different anticholinergics. The pre-treatment assessment included a complete urodynamic study and ultrasonography of the kidneys and urinary tract. A one-month follow-up was completed with urodynamic evaluation and the clinical response was evaluated through outpatient consultations and telephone contact. Results: After the procedure, the maximum cystometric capacity and the bladder reflex volume increased, whereas the maximum detrusor pressure and compliance decreased. The mean duration of continence was 7 ± 7 months. In 18 patients (81.8%), it was necessary to administer anticholinergics to achieve continence. Five patients (22.7%) had indication of reinjection, and augmentation cystoplasty was indicated in 9 patients (40.9%). Conclusion: The use of botulinum toxin in the treatment of neurogenic detrusor overactivity refractory to anticholinergics is an option before more invasive treatments, such as augmentation cystoplasty, are attempted. In our study as well as in the literature, there was improvement in most urodynamic parameters. Overall, 40.9% of patients underwent augmentation cystoplasty and 81.8% of patients needed anticholinergic agents to reach urinary continence. Further studies are necessary to improve the procedure and to achieve better clinical results.
Journal of Men's Health
One of the well reported but difficult to manage symptoms of spinal cord injury (SCI) is neurogenic lower urinary tract dysfunction (NLUTD). The type of NLUTD is variable based on location and extent of injury. SCI affects more males and NLUTD is especially debilitating for men with incomplete injury. This review summarizes the anatomical basis of NLUTD in SCI and discusses current diagnostic and management strategies that are being utilized clinically. The last two sections address new innovations and emerging discoveries with the goal of increasing scientific interest in improving treatment options for people with SCI. Areas warranting further investigation are pinpointed to address current gaps in knowledge and/or appropriate technology.
Electromyography and clinical neurophysiology
Severe cervical Spinal Cord Injury (SCI) leads to quadriplegia, and autonomic dysfunctions. Bladder/bowel continence, cardiovascular performance, and breathing are impaired besides movements. Even though there are no fully restorative treatments for SCI, I report about a patient, who suffered a severe cervical, motoric complete SCI, in whom urinary bladder functions were fully repaired by functional and structural repair (limited regeneration of the cord) upon 2.5 years of Coordination Dynamics Therapy (CDT). On the repair of the blood circulation (no occurrence of pressure ulcers any more), breathing and motor functions was reported earlier. The mechanism that underlies this important repair of urinary bladder functions is the learning transfer from movements to bladder functions. The human bladder repair is analyzed at the neuron level, the collective variable level (System Theory of Pattern Formation), the movement, and the clinical diagnostic level.
Experimental neurology, 2016
Spinal cord injury (SCI) often leads to neurogenic detrusor overactivity (NDO) due to sprouting of sensory afferents on the lumbosacral spinal cord. NDO is characterized by high frequency of voiding contractions and increased intravesical pressure that may lead to urinary incontinence. The latter has been described as one of the consequences of SCI that mostly decreases quality of life. Bladder wall injections of botulinum toxin A (Onabot/A) are an effective option to manage NDO. The toxin strongly impairs parasympathetic and sensory fibers coursing the bladder wall. However the robust parasympathetic inhibition may inhibit voiding contractions and cause urinary retention in patients that retain voluntary voiding. Here, we hypothesised that by restricting the toxin activity to sensory fibers we can improve NDO without impairing voiding contractions. In the present work, we assessed the effect of Onabot/A on sensory neurons in chronic (4 weeks) SCI rats by injecting the toxin intrath...
Neurourology and Urodynamics
Aims: To determine the effects of early sacral neuromodulation (SNM) and pudendal neuromodulation (PNM) on lower urinary tract (LUT) function, minipigs with complete spinal cord injury (cSCI) were analyzed. SNM and PNM have been proposed as therapeutic approaches to improve bladder function, for example after cSCI. However, further evidence on efficacy is required before these methods can become clinical practice. Methods: Eleven adults, female Göttingen minipigs with cSCI at vertebral level T11-T12 were included: SNM (n = 4), PNM (n = 4), and SCI control (SCIC: n = 3). Tissue from six healthy minipigs was used for structural comparisons. Stimulation was started 1 week after cSCI. Awake urodynamics was performed on a weekly basis. After 16 weeks follow-up, samples from the urinary bladder were taken for analyses. Results: SNM improved bladder function with better capacities and lower detrusor pressures at voiding and avoided the emergence of detrusor sphincter dyssynergia (DSD). PNM and untreated SCI minipigs had less favorable outcomes with either DSD or constant urinary retention. Structural results revealed SCI-typical fibrotic alterations in all cSCI minipigs. However, SNM
Neuromodulation: Technology at the Neural Interface, 2014
Introduction: Sacral neuromodulation has been considered as an effective treatment option for various types of chronic voiding dysfunction, but the mechanism of action has not been well understood. The aim of this study was to evaluate the effect of chronic sacral neuromodulation on isolated bladder functions in a rat model of spinal cord injury. Materials and Methods: Female Sprague-Dawley rats (250-300 g; N = 20) were assigned to four groups as follows: 1) control group (N = 6); 2) spinal cord transection group (SCT; N = 5); 3) spinal cord transection + sacral neuromodulation group (SCT + SNM; N = 5); 4) sham (spinal cord transection + electrode wire implantation without sacral neuromodulation; N = 4). The rats in the SCT, SCT + SNM, and sham groups were anesthetized with ketamine (60 mg/kg, i.p.) and xylazine (7 mg/kg, i.p.). The spinal cord was completely transected at T8-T9 level in SCT and SCT + SNM groups. Electrode wires were implanted into S3 dorsal foramina in both sham and SNM groups, but only the SNM group was subjected to electrical stimulation for four hours a day for three weeks. Twenty-one days later, the rats were sacrificed via anesthetic overdose, and isolated longitudinal bladder strip preparations were placed in organ baths for the investigation of their isometric responses to pharmacological agents. Results: In isometric contraction experiments, SCT was found to increase the contraction responses of the bladder strips to muscarinic stimulation, and SNM could not prevent this increase. In isometric relaxation experiments, SCT caused a decrease in β-adrenergic relaxation responses, and SNM augmented the bladder's β-adrenergic relaxation responses. Nitric oxide did not affect the relaxation responses. Conclusion: In our rat model of SCT, SNM seemed to alter adrenergic receptor function in the urinary bladder. Further studies are required to clarify the mechanism of these alterations at the level of bladder receptors following sacral neuromodulation.