Molecular insights on the biosynthesis of antitumour compounds by actinomycetes (original) (raw)
Abstract
Natural products are traditionally the main source of drug leads. In particular, many antitumour compounds are either natural products or derived from them. However, the search for novel antitumour drugs active against untreatable tumours, with fewer side-effects or with enhanced therapeutic efficiency, is a priority goal in cancer chemotherapy. Microorganisms, particularly actinomycetes, are prolific producers of bioactive compounds, including antitumour drugs, produced as secondary metabolites. Structural genes involved in the biosynthesis of such compounds are normally clustered together with resistance and regulatory genes, which facilitates the isolation of the gene cluster. The characterization of these clusters has represented, during the last 25 years, a great source of genes for the generation of novel derivatives by using combinatorial biosynthesis approaches: gene inactivation, gene expression, heterologous expression of the clusters or mutasynthesis. In addition, these techniques have been also applied to improve the production yields of natural and novel antitumour compounds. In this review we focus on some representative antitumour compounds produced by actinomycetes covering the genetic approaches used to isolate and validate their biosynthesis gene clusters, which finally led to generating novel derivatives and to improving the production yields.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (131)
- Ajithkumar, V., and Prasad, R. (2010) The activator/repressor protein DnrO of Streptomyces peucetius binds to DNA without changing its topology. Int J Biol Macromol 46: 380-384.
- August, P.R., Flickinger, M.C., and Sherman, D.H. (1994) Cloning and analysis of a locus (mcr) involved in mitomycin C resistance in Streptomyces lavendulae. J Bacteriol 176: 4448-4454.
- Baig, I., Perez, M., Braña, A.F., Gomathinayagam, R., Damo- daran, C., Salas, J.A., et al. (2008) Mithramycin analogues generated by combinatorial biosynthesis show improved bioactivity. J Nat Prod 71: 199-207.
- Baltz, R.H. (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8: 557-563.
- Bataller, M., Méndez, C., Salas, J.A., and Portugal, J. (2008) Mithramycin SK modulates polyploidy and cell death in colon carcinoma cells. Mol Cancer Ther 7: 2988-2997.
- Bataller, M., Méndez, C., Salas, J.A., and Portugal, J. (2010) Cellular response and activation of apoptosis by mithramy- cin SK in p21(WAF1)-deficient HCT116 human colon car- cinoma cells. Cancer Lett 292: 80-90.
- Beer, L.L., and Moore, B.S. (2007) Biosynthetic convergence of salinosporamides A and B in the marine actinomycete Salinispora tropica. Org Lett 9: 845-848.
- Bérdy, J. (2005) Bioactive microbial metabolites. J Antibiot 58: 1-26.
- Blanco, G., Fernández, E., Fernández, M.J., Braña, A.F., Weissbach, U., Künzel, E., et al. (2000) Characterization of two glycosyltransferases involved in early glycosylation steps during biosynthesis of the antitumor polyketide mith- ramycin by Streptomyces argillaceus. Mol Gen Genet 262: 991-1000.
- Butler, M.S. (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25: 475-516.
- Cui, Z., Wang, L., Wang, S., Li, G., and Hong, B. (2009) Disruption of cagA, the apoprotein gene of chromoprotein antibiotic C-1027, eliminates holo-antibiotic production, but not the cytotoxic chromophore. FEMS Microbiol Lett 301: 57-68.
- Decker, H., Rohr, J., Motamedi, H., Zähner, H., and Hutch- inson, C.R. (1995) Identification of Streptomyces olivaceus Tü2353 genes involved in the production of the polyketide elloramycin. Gene 166: 121-126.
- Eustáquio, A.S., and Moore, B.S. (2008) Mutasynthesis of fluorosalinosporamide, a potent and reversible inhibitor of the proteasome. Angew Chem Int Ed Engl 47: 3936-3938.
- Eustáquio, A.S., O'Hagan, D., and Moore, B.S. (2010) Engi- neering fluorometabolite production: fluorinase expression in Salinispora tropica yields fluorosalinosporamide. J Nat Prod 73: 378-382.
- Fernández, E., Lombó, F., Méndez, C., and Salas, J.A. (1996) An ABC transporter is essential for resistance to the antitumor agent mithramycin in the producer Streptomyces argillaceus. Mol Gen Genet 251: 692-698.
- Fernández, E., Weissbach, U., Sánchez Reillo, C., Braña, A.F., Méndez, C., Rohr, J., and Salas, J.A. (1998) Identifi- cation of two genes from Streptomyces argillaceus encod- ing glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol 180: 4929-4937.
- Fischbach, M.A., and Walsh, C.T. (2006) Assembly-line enzy- mology for polyketide and nonribosomal peptide antibiot- ics: logic, machinery, and mechanisms. Chem Rev 106: 3468-3496.
- Fischer, C., Rodríguez, L., Patallo, E.P., Lipata, F., Braña, A.F., Méndez, C., et al. (2002) Digitoxosyltetracenomycin C and glucosyltetracenomycin C, two novel elloramycin analogues obtained by exploring the sugar donor substrate specificity of glycosyltransferase ElmGT. J Nat Prod 65: 1685-1689.
- Floss, H.G. (2006) Combinatorial biosynthesis-potential and problems. J Biotechnol 124: 242-257.
- Furuya, K., and Hutchinson, C.R. (1996) The DnrN protein of Streptomyces peucetius, a pseudo-response regulator, is a DNA binding protein involved in the regulation of daunoru- bicin biosynthesis. J Bacteriol 178: 6310-6318.
- Furuya, K., and Hutchinson, C.R. (1998) The DrrC protein of Streptomyces peucetius, a UvrA-like protein, is a DNA- binding protein whose gene is induced by daunorubicin. FEMS Microbiol Lett 168: 243-249.
- Galm, U., Wang, L., Wendt-Pienkowski, E., Yang, R., Liu, W., Tao, M., et al. (2008) In vivo manipulation of the bleomycin biosynthetic gene cluster in Streptomyces verticillus ATCC 15003 revealing new insights into its biosynthetic pathway. J Biol Chem 283: 28236-28245.
- Garcia-Bernardo, J., Braña, A.F., Méndez, C., and Salas, J.A. (2000) Insertional inactivation of mtrX and mtrY genes from the mithramycin gene cluster affects production and growth of the producer organism Streptomyces argillaceus. FEMS Microbiol Lett 186: 61-65.
- Gregory, M.A., Petkovic, H., Lill, R.E., Moss, S.J., Wilkinson, B., Gaisser, S., et al. (2005) Mutasynthesis of rapamycin analogues through the manipulation of a gene governing starter unit biosynthesis. Angew Chem Int Ed Engl 44: 4757-4760.
- Grüschow, S., Chang, L.C., Mao, Y., and Sherman, D.H. (2007) Hydroxyquinone O-methylation in mitomycin bio- synthesis. J Am Chem Soc 129: 6470-6476.
- Guilfoile, P.G., and Hutchinson, C.R. (1991) A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of dauno- rubicin and doxorubicin. Proc Natl Acad Sci USA 88: 8553- 8557.
- Gulder, T.A., and Moore, B.S. (2009) Chasing the treasures of the sea -bacterial marine natural products. Curr Opin Microbiol 12: 252-260.
- Gullón, S., Olano, C., Abdelfattah, M.S., Braña, A.F., Rohr, J., Méndez, C., and Salas, J.A. (2006) Isolation, characteriza- tion, and heterologous expression of the biosynthesis gene cluster for the antitumor anthracycline steffimycin. Appl Environ Microbiol 72: 4172-4183.
- Hayashi, Y., Matsuura, N., Toshima, H., Itoh, N., Ishikawa, J., Mikami, Y., and Dairi, T. (2008) Cloning of the gene cluster responsible for the biosynthesis of brasilicardin A, a unique diterpenoid. J Antibiot 61: 164-174.
- Hirano, S., Tanaka, K., Ohnishi, Y., and Horinouchi, S. (2008) Conditionally positive effect of the TetR-family transcrip- tional regulator AtrA on streptomycin production by Strep- tomyces griseus. Microbiology 154: 905-914.
- Hosoya, Y., Okamoto, S., Muramatsu, H., and Ochi, K. (1998) Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 42: 2041-2047.
- Hutchinson, C.R. (1997) Biosynthetic studies of daunorubicin and tetracenomycin C. Chem Rev 97: 2525-2536.
- Hyun, C.G., Bililign, T., Liao, J., and Thorson, J.S. (2003) The biosynthesis of indolocarbazoles in a heterologous E. coli host. Chembiochem 4: 114-117.
- Jiang, H., and Hutchinson, C.R. (2006) Feedback regulation of doxorubicin biosynthesis in Streptomyces peucetius. Res Microbiol 157: 666-674.
- Johnson, D.A., August, P.R., Shackleton, C., Liu, H.W., and Sherman, D.H. (1997) Microbial resistance to mitomycins involves a redox relay mechanism. J Am Chem Soc 119: 2576-2577.
- Keller, U., Lang, M., Crnovcic, I., Pfennig, F., and Schau- wecker, F. (2010) The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry. J Bacteriol 192: 2583-2595.
- Kennedy, J. (2008) Mutasynthesis, chemobiosynthesis, and back to semi-synthesis: combining synthetic chemistry and biosynthetic engineering for diversifying natural products. Nat Prod Rep 25: 25-34.
- Kuscer, E., Coates, N., Challis, I., Gregory, M., Wilkinson, B., Sheridan, R., and Petkovic ´, H. (2007) Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J Bacteriol 189: 4756-4763.
- Liu, W., and Shen, B. (2000) Genes for production of the enediyne antitumor antibiotic C-1027 in Streptomyces glo- bisporus are clustered with the cagA gene that encodes the C-1027 apoprotein. Antimicrob Agents Chemother 44: 382-392.
- Liu, W., Christenson, S.D., Standage, S., and Shen, B. (2002) Biosynthesis of the enediyne antitumor antibiotic C-1027. Science 297: 1170-1173.
- Lombó, F., Blanco, G., Fernández, E., Méndez, C., and Salas, J.A. (1996) Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. Gene 172: 87-91.
- Lombó, F., Siems, K., Braña, A.F., Méndez, C., Bindseil, K., and Salas, J.A. (1997) Cloning and insertional inactivation of Streptomyces argillaceus genes involved in the earliest steps of biosynthesis of the sugar moieties of the antitumor polyketide mithramycin. J Bacteriol 179: 3354-3357.
- Lombó, F., Braña, A.F., Méndez, C., and Salas, J.A. (1999) The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181: 642-647.
- Lombó, F., Braña, A.F., Salas, J.A., and Méndez, C. (2004a) Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. Chembiochem 5: 1181-1187.
- Lombó, F., Gibson, M., Greenwell, L., Braña, A.F., Rohr, J., Salas, J.A., and Méndez, C. (2004b) Engineering biosyn- thetic pathways for deoxysugars: branched-chain sugar pathways and derivatives from the antitumor tetracenomy- cin. Chem Biol 11: 1709-1718.
- Lombó, F., Velasco, A., Castro, A., de la Calle, F., Braña, A.F., Sánchez-Puelles, J.M., et al. (2006) Deciphering the bio- synthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two Streptomy- ces species. Chembiochem 7: 366-376.
- Lombó, F., Abdelfattah, M.S., Braña, A.F., Salas, J.A., Rohr, J., and Méndez, C. (2009) Elucidation of oxygenation steps during oviedomycin biosynthesis and generation of deriva- tives with increased antitumor activity. Chembiochem 10: 296-303.
- Lomovskaya, N., Hong, S.K., Kim, S.U., Fonstein, L., Furuya, K., and Hutchinson, R.C. (1996) The Streptomyces peuce- tius drrC gene encodes a UvrA-like protein involved in daunorubicin resistance and production. J Bacteriol 178: 3238-3245.
- Lomovskaya, N., Doi-Katayama, Y., Filippini, S., Nastro, C., Fonstein, L., Gallo, M., et al. (1998) The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. J Bac- teriol 180: 2379-2386.
- Lomovskaya, N., Otten, S.L., Doi-Katayama, Y., Fonstein, L., Liu, X.C., Takatsu, T., et al. (1999) Doxorubicin overpro- duction in Streptomyces peucetius: cloning and character- ization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J Bacteriol 181: 305-318.
- Luzhetskyy, A., Mayer, A., Hoffmann, J., Pelzer, S., Holzen- kämper, M., Schmitt, B., et al. (2007) Cloning and heter- ologous expression of the aranciamycin biosynthetic gene cluster revealed a new flexible glycosyltransferase. Chem- biochem 8: 599-602.
- McGlinchey, R.P., Nett, M., Eustáquio, A.S., Asolkar, R.N., Fenical, W., and Moore, B.S. (2008) Engineered biosyn- thesis of antiprotealide and other unnatural salinospora- mide proteasome inhibitors. J Am Chem Soc 130: 7822- 7823.
- Madduri, K., and Hutchinson, C.R. (1995) Functional charac- terization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol 177: 1208-1215.
- Madduri, K., Kennedy, J., Rivola, G., Inventi-Solari, A., Filip- pini, S., Zanuso, G., et al. (1998) Production of the antitu- mor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat Biotechnol 16: 69-74.
- Madduri, K., Waldron, C., and Merlo, D.J. (2001) Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa. J Bacteriol 183: 5632-5638.
- Malla, S., Niraula, N.P., Liou, K., and Sohng, J.K. (2009) Enhancement of doxorubicin production by expression of structural sugar biosynthesis and glycosyltransferase genes in Streptomyces peucetius. J Biosci Bioeng 108: 92-98.
- Malla, S., Niraula, N.P., Liou, K., and Sohng, J.K. (2010a) Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol Res 165: 259-267.
- Malla, S., Niraula, N.P., Liou, K., and Sohng, J.K. (2010b) Improvement in doxorubicin productivity by overexpression of regulatory genes in Streptomyces peucetius. Res Micro- biol 161: 109-117.
- Mao, Y., Varoglu, M., and Sherman, D.H. (1999a) Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 6: 251- 263.
- Mao, Y., Varoglu, M., and Sherman, D.H. (1999b) Genetic localization and molecular characterization of two key genes (mitAB) required for biosynthesis of the antitumor antibiotic mitomycin C. J Bacteriol 181: 2199-2208.
- Méndez, C., and Salas, J.A. (2003) On the generation of novel anticancer drugs by recombinant DNA technology: the use of combinatorial biosynthesis to produce novel drugs. Comb Chem High Throughput Screen 6: 513-526.
- Méndez, C., Künzel, E., Lipata, F., Lombó, F., Cotham, W., Walla, M., et al. (2002) Oviedomycin, an unusual angucy- clinone encoded by genes of the oleandomycin-producer Streptomyces antibioticus ATCC 11891. J Nat Prod 65: 779-782.
- Méndez, C., Luzhetskyy, A., Bechthold, A., and Salas, J.A. (2008) Deoxysugars in bioactive natural products: devel- opment of novel derivatives by altering the sugar pattern. Curr Top Med Chem 8: 710-724.
- Menéndez, N., Nur-e-Alam, M., Braña, A.F., Rohr, J., Salas, J.A., and Méndez, C. (2004a) Biosynthesis of the antitumor chromomycin A3 in Streptomyces griseus: analysis of the gene cluster and rational design of novel chromomycin analogs. Chem Biol 11: 21-32.
- Menéndez, N., Nur-e-Alam, M., Braña, A.F., Rohr, J., Salas, J.A., and Méndez, C. (2004b) Tailoring modification of deoxysugars during biosynthesis of the antitumour drug chromomycin A3 by Streptomyces griseus ssp. griseus. Mol Microbiol 53: 903-915.
- Menéndez, N., Nur-e-Alam, M., Fischer, C., Braña, A.F., Salas, J.A., Rohr, J., and Méndez, C. (2006) Deoxysugar transfer during chromomycin A3 biosynthesis in Streptomy- ces griseus subsp. griseus: new derivatives with antitumor activity. Appl Environ Microbiol 72: 167-177.
- Menéndez, N., Braña, A.F., Salas, J.A., and Méndez, C. (2007) Involvement of a chromomycin ABC transporter system in secretion of a deacetylated precursor during chromomycin biosynthesis. Microbiology 153: 3061-3070.
- Menzella, H.G., and Reeves, C.D. (2007) Combinatorial bio- synthesis for drug development. Curr Opin Microbiol 10: 238-245.
- Molnár, I., Aparicio, J.F., Haydock, S.F., Khaw, L.E., Schwecke, T., König, A., et al. (1996) Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169: 1-7.
- Moss, S.J., Carletti, I., Olano, C., Sheridan, R.M., Ward, M., Math, V., et al. (2006) Biosynthesis of the angiogenesis inhibitor borrelidin: directed biosynthesis of novel ana- logues. Chem Commun 22: 2341-2343.
- Murrell, J.M., Liu, W., and Shen, B. (2004) Biochemical char- acterization of the SgcA1 alpha-D-glucopyranosyl-1- phosphate thymidylyltransferase from the enediyne antitumor antibiotic C-1027 biosynthetic pathway and over- expression of sgcA1 in Streptomyces globisporus to improve C-1027 production. J Nat Prod 67: 206-213.
- Newman, D.J., and Cragg, G.M. (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70: 461-477.
- Nur-e-Alam, M., Méndez, C., Salas, J.A., and Rohr, J. (2005) Elucidation of the glycosylation sequence of mithramycin biosynthesis: isolation of 3A-deolivosylpremithramycin B and its conversion to premithramycin B by glycosyltrans- ferase MtmGII. Chembiochem 6: 632-636.
- Oh, T.J., Niraula, N.P., Liou, K., and Sohng, J.K. (2010) Iden- tification of the duplicated genes for S-adenosyl-L- methionine synthetase (metK1-sp and metK2-sp) in Streptomyces peucetius var. caesius ATCC 27952. J Appl Microbiol 109: 398-407.
- Olano, C., Wilkinson, B., Moss, S.J., Braña, A.F., Méndez, C., Leadlay, P.F., and Salas, J.A. (2003) Evidence from engi- neered gene fusions for the repeated use of a module in a modular polyketide synthase. Chem Commun 22: 2780- 2782.
- Olano, C., Wilkinson, B., Sánchez, C., Moss, S.J., Sheridan, R., Math, V., et al. (2004a) Biosynthesis of the angiogen- esis inhibitor borrelidin by Streptomyces parvulus Tü4055: cluster analysis and assignment of functions. Chem Biol 11: 87-97.
- Olano, C., Moss, S.J., Braña, A.F., Sheridan, R.M., Math, V., Weston, A.J., et al. (2004b) Biosynthesis of the angio- genesis inhibitor borrelidin by Streptomyces parvulus Tü4055: insights into nitrile formation. Mol Microbiol 52: 1745-1756.
- Olano, C., Lombó, F., Méndez, C., and Salas, J.A. (2008a) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10: 281-292.
- Olano, C., Abdelfattah, M.S., Gullón, S., Braña, A.F., Rohr, J., Méndez, C., and Salas, J.A. (2008b) Glycosylated deriva- tives of steffimycin: insights into the role of the sugar moi- eties for the biological activity. Chembiochem 9: 624-633.
- Olano, C., Méndez, C., and Salas, J.A. (2009a) Antitumor compounds from marine actinomycetes. Mar Drugs 7: 210-248.
- Olano, C., Méndez, C., and Salas, J.A. (2009b) Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis. Nat Prod Rep 26: 628-660.
- Olano, C., Méndez, C., and Salas, J.A. (2010) Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 27: 571-616.
- Onaka, H., Taniguchi, S., Igarashi, Y., and Furumai, T. (2002) Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expres- sion in Streptomyces lividans. J Antibiot 55: 1063-1071.
- Otten, S.L., Stutzman-Engwall, K.J., and Hutchinson, C.R. (1990) Cloning and expression of daunorubicin biosynthe- sis genes from Streptomyces peucetius and S. peucetius subsp. caesius. J Bacteriol 172: 3427-3434.
- Otten, S.L., Liu, X., Ferguson, J., and Hutchinson, C.R. (1995a) Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosyn- thesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J Bacteriol 177: 6688-6692.
- Otten, S.L., Ferguson, J., and Hutchinson, C.R. (1995b) Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J Bacteriol 177: 1216-1224.
- Otten, S.L., Gallo, M.A., Madduri, K., Liu, X., and Hutchinson, C.R. (1997) Cloning and characterization of the Streptomy- ces peucetius dnmZUV genes encoding three enzymes required for biosynthesis of the daunorubicin precursor thymidine diphospho-L-daunosamine. J Bacteriol 179: 4446-4450.
- Otten, S.L., Olano, C., and Hutchinson, C.R. (2000) The dnrO gene encodes a DNA-binding protein that regulates dauno- rubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. Microbiology 146: 1457-1468.
- Parajuli, N., Viet, H.T., Ishida, K., Tong, H.T., Lee, H.C., Liou, K., and Sohng, J.K. (2005) Identification and characteriza- tion of the afsR homologue regulatory gene from Strepto- myces peucetius ATCC 27952. Res Microbiol 156: 707- 712.
- Patel, K., Piagentini, M., Rascher, A., Tian, Z.Q., Buchanan, G.O., Regentin, R., et al. (2004) Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chem Biol 11: 1625-1633.
- Pérez, M., Lombó, F., Zhu, L., Gibson, M., Braña, A.F., Rohr, J., et al. (2005) Combining sugar biosynthesis genes for the generation of L-and D-amicetose and formation of two novel antitumor tetracenomycins. Chem Commun 12: 1604-1606.
- Pérez, M., Lombó, F., Baig, I., Braña, A.F., Rohr, J., Salas, J.A., and Méndez, C. (2006) Combinatorial biosynthesis of antitumor deoxysugar pathways in Streptomyces griseus: reconstitution of 'unnatural natural gene clusters' for the biosynthesis of four 2,6-D-dideoxyhexoses. Appl Environ Microbiol 72: 6644-6652.
- Pérez, M., Baig, I., Braña, A.F., Salas, J.A., Rohr, J., and Méndez, C. (2008) Generation of new derivatives of the antitumor antibiotic mithramycin by altering the glycosyla- tion pattern through combinatorial biosynthesis. Chembio- chem 9: 2295-2304.
- Ramos, A., Lombó, F., Braña, A.F., Rohr, J., Méndez, C., and Salas, J.A. (2008) Biosynthesis of elloramycin in Strepto- myces olivaceus requires glycosylation by enzymes encoded outside the aglycon cluster. Microbiology 154: 781-788.
- Ramos, A., Olano, C., Braña, A.F., Méndez, C., and Salas, J.A. (2009) Modulation of deoxysugar transfer by the elloramycin glycosyltransferase ElmGT through site- directed mutagenesis. J Bacteriol 191: 2871-2875.
- Ramos, J.L., Martínez-Bueno, M., Molina-Henares, A.J., Terán, W., Watanabe, K., Zhang, X., et al. (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69: 326-356.
- Rascher, A., Hu, Z., Viswanathan, N., Schirmer, A., Reid, R., Nierman, W.C., et al. (2003) Cloning and characterization of a gene cluster for geldanamycin production in Strepto- myces hygroscopicus NRRL 3602. FEMS Microbiol Lett 218: 223-230.
- Remsing, L.L., Garcia-Bernardo, J., Gonzalez, A., Künzel, E., Rix, U., Braña, A.F., et al. (2002) Ketopremithramycins and ketomithramycins, four new aureolic acid-type compounds obtained upon inactivation of two genes involved in the biosynthesis of the deoxysugar moieties of the antitumor drug mithramycin by Streptomyces argillaceus, reveal novel insights into post-PKS tailoring steps of the mithra- mycin biosynthetic pathway. J Am Chem Soc 124: 1606- 1614.
- Remsing, L.L., González, A.M., Nur-e-Alam, M., Fernández- Lozano, M.J., Braña, A.F., Rix, U., et al. (2003) Mithramy- cin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthe- sis. J Am Chem Soc 125: 5745-5753.
- Rodríguez, L., Aguirrezabalaga, I., Allende, N., Braña, A.F., Méndez, C., and Salas, J.A. (2002) Engineering deox- ysugar biosynthetic pathways from antibiotic-producing microorganisms. A tool to produce novel glycosylated bio- active compounds. Chem Biol 9: 721-729.
- Salas, A.P., Zhu, L., Sánchez, C., Braña, A.F., Rohr, J., Méndez, C., and Salas, J.A. (2005) Deciphering the late steps in the biosynthesis of the anti-tumour indolocarba- zole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase. Mol Microbiol 58: 17-27.
- Salas, J.A., and Méndez, C. (2007) Engineering the glycosy- lation of natural products in actinomycetes. Trends Micro- biol 15: 219-232.
- Salas, J.A., and Méndez, C. (2009) Indolocarbazole antitu- mour compounds by combinatorial biosynthesis. Curr Opin Chem Biol 13: 152-160.
- Sánchez, C., Butovich, I.A., Braña, A.F., Rohr, J., Méndez, C., and Salas, J.A. (2002) The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and genera- tion of indolocarbazole derivatives. Chem Biol 9: 519-531.
- Sánchez, C., Salas, A.P., Braña, A.F., Palomino, M., Pineda- Lucena, A., Carbajo, R.J., et al. (2009) Generation of potent and selective kinase inhibitors by combinatorial bio- synthesis of glycosylated indolocarbazoles. Chem Commun 27: 4118-4120.
- Schauwecker, F., Pfennig, F., Schröder, W., and Keller, U. (1998) Molecular cloning of the actinomycin synthetase gene cluster from Streptomyces chrysomallus and func- tional heterologous expression of the gene encoding acti- nomycin synthetase II. J Bacteriol 180: 2468-2474.
- Schwecke, T., Aparicio, J.F., Molnar, I., Konig, A., Khaw, L.E., Haydock, S.F., et al. (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci USA 92: 7839-7843.
- Scotti, C., and Hutchinson, C.R. (1996) Enhanced antibiotic production by manipulation of the Streptomyces peucetius dnrH and dnmT genes involved in doxorubicin (adriamycin) biosynthesis. J Bacteriol 178: 7316-7321.
- Shao, L., Huang, J., Jing, L., Chen, J.Y., Kan, S.D., Wang, M., et al. (2010) Overexpression of aveBIV leading to the improvement of 4′-epidaunorubicin production in Strepto- myces coeruleorubidus strain SIPI-A0707. Appl Microbiol Biotechnol 87: 1057-1064.
- Sheldon, P.J., Johnson, D.A., August, P.R., Liu, H.W., and Sherman, D.H. (1997) Characterization of a mitomycin- binding drug resistance mechanism from the producing organism, Streptomyces lavendulae. J Bacteriol 179: 1796-1804.
- Sheldon, P.J., Mao, Y., He, M., and Sherman, D.H. (1999) Mitomycin resistance in Streptomyces lavendulae includes a novel drug-binding-protein-dependent export system. J Bacteriol 181: 2507-2512.
- Sheldon, P.J., Busarow, S.B., and Hutchinson, C.R. (2002) Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44: 449-460.
- Shen, B. (2003) Biosynthesis of aromatic polyketides. Curr Opin Chem Biol 7: 285-295.
- Shen, B., Du, L., Sanchez, C., Edwards, D.J., Chen, M., and Murrell, J.M. (2002) Cloning and characterization of the bleomycin biosynthetic gene cluster from Streptomyces verticillus ATCC 15003. J Nat Prod 65: 422-431.
- Shin, J.C., Na, Z., Lee, D.H., Kim, W.C., Lee, K., Shen, Y.M., et al. (2008) Characterization of tailoring genes involved in the modification of geldanamycin polyketide in Streptomy- ces hygroscopicus JCM4427. J Microbiol Biotechnol 18: 1101-1108.
- Singh, B., Lee, C.B., and Sohng, J.K. (2010) Precursor for biosynthesis of sugar moiety of doxorubicin depends on rhamnose biosynthetic pathway in Streptomyces peucetius ATCC 27952. Appl Microbiol Biotechnol 85: 1565-1574.
- Sitachitta, N., Lopanik, N.B., Mao, Y., and Sherman, D.H. (2007) Analysis of a parallel branch in the mitomycin bio- synthetic pathway involving the mitN-encoded aziridine N-methyltransferase. J Biol Chem 282: 20941-20947.
- Srinivasan, P., Palani, S.N., and Prasad, R. (2010) Daunoru- bicin efflux in Streptomyces peucetius modulates biosyn- thesis by feedback regulation. FEMS Microbiol Lett 305: 18-27.
- Stutzman-Engwall, K.J., Otten, S.L., and Hutchinson, C.R. (1992) Regulation of secondary metabolism in Streptomy- ces spp. and overproduction of daunorubicin in Streptomy- ces peucetius. J Bacteriol 174: 144-154.
- Sugiyama, M., Thompson, C.J., Kumagai, T., Suzuki, K., Deblaere, R., Villarroel, R., and Davies, J. (1994a) Char- acterisation by molecular cloning of two genes from Strep- tomyces verticillus encoding resistance to bleomycin. Gene 151: 11-16.
- Sugiyama, M., Kumagai, T., Shionoya, M., Kimura, E., and Davies, J.E. (1994b) Inactivation of bleomycin by an N-acetyltransferase in the bleomycin-producing strain Streptomyces verticillus. FEMS Microbiol Lett 121: 81- 85.
- Truglio, J.J., Croteau, D.L., Van Houten, B., and Kisker, C. (2006) Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 106: 233-252.
- Udwary, D.W., Zeigler, L., Asolkar, R.N., Singan, V., Lapidus, A., Fenical, W., et al. (2007) Genome sequencing reveals complex secondary metabolome in the marine actino- mycete Salinispora tropica. Proc Natl Acad Sci USA 104: 10376-10381.
- Van Lanen, S.G., Dorrestein, P.C., Christenson, S.D., Liu, W., Ju, J., Kelleher, N.L., and Shen, B. (2005) Biosynthesis of the b-amino acid moiety of the enediyne antitumor antibi- otic C-1027 featuring b-amino acyl-S-carrier protein inter- mediates. J Am Chem Soc 127: 11594-11595.
- Van Lanen, S.G., Linm, S., and Shen, B. (2008) Biosynthesis of the enediyne antitumor antibiotic C-1027 involves a new branching point in chorismate metabolism. Proc Natl Acad Sci USA 105: 494-499.
- Waldron, C., Matsushima, P., Rosteck, P.R., Jr, Broughton, M.C., Turner, J., Madduri, K., et al. (2001) Cloning and analysis of the spinosad biosynthetic gene cluster of Sac- charopolyspora spinosa. Chem Biol 8: 487-499.
- Wang, G., Hosaka, T., and Ochi, K. (2008) Dramatic activa- tion of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Micro- biol 74: 2834-2840.
- Wang, L., Hu, Y., Zhang, Y., Wang, S., Cui, Z., Bao, Y., et al. (2009) Role of sgcR3 in positive regulation of enediyne antibiotic C-1027 production of Streptomyces globisporus C-1027. BMC Microbiol 9: 1-12.
- Wilkinson, B., Gregory, M.A., Moss, S.J., Carletti, I., Sheri- dan, R.M., Kaja, A., et al. (2006) Separation of anti- angiogenic and cytotoxic activities of borrelidin by modification at the C17 side chain. Bioorg Med Chem Lett 16: 5814-5817.
- Yu, T.W., Bai, L., Clade, D., Hoffmann, D., Toelzer, S., Trinh, K.Q., et al. (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosyn- nema pretiosum. Proc Natl Acad Sci USA 99: 7968- 7973.
- Zhang, M.Q., and Wilkinson, B. (2007) Drug discovery beyond the 'rule-of-five'. Curr Opin Biotechnol 18: 478- 488.