Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study (original) (raw)
Abstract
In this study, pyrolysis of residual biomass from the agro-alimentary industry of Argentina was investigated. The studied biomasses were rice husk, peanut shell and wheat straw. The effect of pyrolysis temperature over solid (bio-char), liquid (bio-oil) and gas (bio-gas) fractions weight yields were evaluated for each biomass, in the range of 350-650°C. The maximum yield of bio-oil was obtained at 550°C for rice husk (45 wt%) and wheat straw (58 wt%), and at 500°C for peanut shells (51 wt%). At those temperatures, the data recorded the smallest spread around the mean. Different characterization techniques of raw biomass were reported, namely, thermal behavior; proximate and ultimate analysis; content of Ca, Al, K, Si and Fe; and hemicellulose, cellulose and lignin composition. Bio-oils characterization included water content and chemical compounds identification. Furthermore, bio-char HHV and BET surface area were measured. Rice husk bio-oil showed 21% selectivity towards furans of which 75% corresponded to furfural and 5-HMF. Peanut shell bio-char presented the highest Higher Heating Value (7250 kcal/kg) and BET surface area (215 m 2 /g). In addition, co-pyrolysis reactions and the synergistic effects over obtained products completed this study. Co-pyrolysis bio-oils yields varied between 41 and 46 wt%, for all the mixtures. Bio-oil water content decreased up to 15% for rice husk mixed with peanut shell or wheat straw. Moreover, 5-HMF was detected in all bio-oils, and furfural selectivity was higher than 5% in the three mixtures investigated.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (77)
- Adam, F., Retnam, P., Iqbal, A., 2009. The complete conversion of cyclohexane into cyclohexanol and cyclohexanone by a simple silica-chromium heterogeneous catalyst. Appl. Catal. A 357 (1), 93-99. https://doi.org/10.1016/j. apcata.2009.01.017.
- Akhtar, J., Saidina Amin, N., 2012. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. Sustain. Energy Rev. 16 (7), 5101- 5109. https://doi.org/10.1016/j.rser.2012.05.033.
- Alasino, M.C., 2009. Harina de arveja en la elaboración de pan. Estudio del efecto de emulsionantes como mejoradores de volumen y vida útil., 178
- Alemdar, A., Sain, M., 2008. Isolation and characterization of nanofibers from agricultural residues -Wheat straw and soy hulls. Bioresour. Technol. 99 (6), 1664-1671. https://doi.org/10.1016/j.biortech.2007.04.029.
- Arcanjo, M.R.A., Silva, I.J., Rodríguez-Castellón, E., Infantes-Molina, A., Vieira, R.S., 2017. Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catal. Today 279, 317-326. https://doi.org/10.1016/ j.cattod.2016.02.015.
- Atalla, R.H., Vanderhart, D.L., 1984. Native cellulose: a composite of two distinct crystalline forms. Science 223, 283-285. https://doi.org/
- 1126/science.223.4633.283.
- Balasundram, V., Ibrahim, N., Kasmani, R.M., Hamid, M.K.A., Isha, R., Hasbullah, H., Ali, R.R., 2018. Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil. J. Cleaner Prod. 167, 218-228. https://doi.org/10.1016/j.jclepro.2017.08.173\. Balasundram, V., Ibrahim, N., Samsudin, M.D.H., Kasmani, R.M., Abd Hamidb, M.K., Ishac, R., Hasbullah, H., 2017. Thermogravimetric Studies on the Catalytic Pyrolysis of Rice Husk. Chem. Eng. Trans. 56 (May), 427-432. https://doi.org/ 10.3303/CET1756072.
- Bolsa de Comercio de Córdoba, 2006. Encadenamiento productivo del maní. In: El Balance de la Economía Argentina 2006. Una nueva oportunidad. Córdoba Bolsa de Comercio de Córdoba, pp. 531-548.
- Bragachini, M., Mathier, D., 2016. La Bioenergía en el Sector Agropecuario Argentino como Herramienta para el Agregado de Valor en Origen. In: Manfredi, I. (Ed.), 15°Curso
- Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60 (2), 309-319. https://doi.org/10.1021/ja01269a023.
- Bustin, R.M., Guo, Y., 1999. Abrupt changes z ˇjumps / in reflectance values and chemical compositions of artificial charcoals and inertinite in coals.
- Cai, W., Liu, Q., Shen, D., Wang, J., 2018. Py-GC/MS analysis on product distribution of two-staged biomass pyrolysis. J. Anal. Appl. Pyrol. https://doi.org/10.1016/ j.jaap.2018.12.007.
- Centro Internacional de Agricultura Tropical. 2010. Produccion Eco-Eficiente del Arroz en America Latina Tomo I. In: Produccion Eco-Eficiente del Arroz en America Latina Tomo I. Cali.
- Chynoweth, D.P., Owens, J.M., Legrand, R., 2000. Renewable methane from anaerobic digestion of biomass. Renew. Energy 22 (1-3), 1-8. https://doi.org/ 10.1016/S0960-1481(00)00019-7.
- Coates, J., 2006. Interpretation of Infrared Spectra, A Practical Approach. 1-23. doi:10.1002/9780470027318.a5606.
- De Cordoba, M.C.F., Matos, J., Montaña, R., Poon, P.S., Lanfredi, S., Praxedes, F.R.Ania, C.O., 2018. Sunlight photoactivity of rice husks-derived biogenic silica. Catalysis Today (December). https://doi.org/S0920586118311313.
- Corma Canos, A., Iborra, S., Velty, A., 2007. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107 (6), 2411-2502. https://doi.org/ 10.1021/cr050989d.
- Czernik, S., Bridgwater, A.V., 2004. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18 (2), 590-598. https://doi.org/10.1021/ef034067u.
- Davarpanah, J., Sayahi, M.H., Ghahremani, M., Karkhoei, S., 2019. Synthesis and characterization of nano acid catalyst derived from rice husk silica and its application for the synthesis of 3,4-dihydropyrimidinones/thiones compounds. J. Mol. Struct. https://doi.org/10.1016/j.molstruc.2018.12.113.
- Dhyani, V., Bhaskar, T., 2017. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy. https://doi.org/10.1016/j. renene.2017.04.035.
- Dhyani, V., Bhaskar, T., 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 129, 695-716. https://doi.org/10.1016/ j.renene.2017.04.035.
- FAO. 2009. Análisis del Balance de Energía derivada de Biomasa en Argentina - Wisdom Argentina. 118. Retrieved from http://www.fao.org/docrep/011/ i0900s/i0900s00.htm.
- Fernandes, I.J., Calheiro, D., Kieling, A.G., Moraes, C.A.M., Rocha, T.L.A.C., Brehm, F.A., Modolo, R.C.E., 2016. Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 165, 351-359. https://doi.org/ 10.1016/j.fuel.2015.10.086.
- French, A.D., 2014. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21 (2), 885-896. https://doi.org/10.1007/s10570-013-0030-4.
- Friedl, A., Padouvas, E., Rotter, H., Varmuza, K., 2005. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta 544 (1-2 SPEC. ISS.), 191-198. https://doi.org/10.1016/j.aca.2005.01.041.
- Fu, Y., Shen, Y., Zhang, Z., Ge, X., Chen, M., 2019. Activated bio-chars derived from rice husk via one-and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 646, 1567-1577. https://doi.org/10.1016/j. scitotenv.2018.07.423.
- Gaggiotti, M.C., Romero, L.A., Bruno, O.A., Comeron, E.A., Quaino, O.R., 1996. TABLA DE COMPOSICIÓN QUÍMICA DE ALIMENTOS : I -forrajes conservados. INTA. Centro Regional Santa Fe. EEA Rafaela (1).
- Gani, A., Naruse, I., 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew. Energy 32 (4), 649-661. https://doi.org/10.1016/j.renene.2006.02.017.
- Gao, Z., Li, N., Yin, S., Yi, W., 2019. Pyrolysis behavior of cellulose in a fixed bed reactor: residue evolution and effects of parameters on products distribution and bio-oil composition. Energy 175, 1067-1074. https://doi.org/10.1016/j. energy.2019.03.094.
- García, J.R., Bertero, M., Falco, M., Sedran, U., 2015. Catalytic cracking of bio-oils improved by the formation of mesopores by means of y zeolite desilication. Appl. Catal. A 503, 1-8. https://doi.org/10.1016/j.apcata.2014.11.005.
- Geissdoerfer, M., Savaget, P., Bocken, N.M.P., Hultink, E.J., 2017. The Circular Economy -A new sustainability paradigm? J. Cleaner Prod. 143, 757-768. https://doi.org/10.1016/j.jclepro.2016.12.048.
- Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L., 2017. Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells. Renew. Energy 114, 697-707. https://doi. org/10.1016/j.renene.2017.07.065.
- Han, L., Wang, Q., Ma, Q., Yu, C., Luo, Z., Cen, K., 2010. Influence of CaO additives on wheat-straw pyrolysis as determined by TG-FTIR analysis. J. Anal. Appl. Pyrol. 88 (2), 199-206. https://doi.org/10.1016/j.jaap.2010.04.007.
- Hu, X., Guo, H., Gholizadeh, M., Sattari, B., Liu, Q., 2019. Pyrolysis of different wood species: impacts of C/H ratio in feedstock on distribution of pyrolysis products. Biomass Bioenergy 120 (July 2018), 28-39. https://doi.org/10.1016/j. biombioe.2018.10.021.
- Ibrahim, N., Jensen, P.A., Johansen, D.M., Ali, R.R., Kasmani, M.R., 2012. Influence of reaction temperature and water content on wheat straw pyrolysis. World Academy of Science, Engineering and Technology.
- Idrees, M., Rangari, V., Jeelani, S., 2018. Sustainable packaging waste-derived activated carbon for carbon dioxide capture. J. CO2 Util. 26 (March), 380-387. https://doi.org/10.1016/j.jcou.2018.05.016.
- Islam, M.S., Kao, N., Bhattacharya, S.N., Gupta, R., Choi, H.J., 2018. Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. Chin. J. Chem. Eng. 26 (3), 465-476. https://doi.org/10.1016/j.cjche.2017.07.004.
- Jaurena, G., Wawrzkiewicz, M., 2013. evaluación de forrajes y alimentos Guía de procedimientos analíticos. 1-62.
- Kan, T., Strezov, V., Evans, T.J., 2016. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 57, 126-1140. https://doi.org/10.1016/j.rser.2015.12.185.
- Lee, J., Yang, X., Cho, S.H., Kim, J.K., Lee, S.S., Tsang, D.C.W., Kwon, E.E., 2017. Pyrolysis process of agricultural waste using CO2for waste management, energy recovery, and biochar fabrication. Appl. Energy 185, 214-222. https://doi.org/ 10.1016/j.apenergy.2016.10.092.
- Meng, F., Yu, J., Tahmasebi, A., Han, Y., Zhao, H., Lucas, J., Wall, T., 2013. Characteristics of Chars from Low-Temperature Pyrolysis of Lignite.
- Ministerio de Energía y Minería -Subsecretaría de Energía -República Argentina. 2018. Tabla de conversiones energéticas. Retrieved October 31, 2018, from http://www.energia.gob.ar/contenidos/verpagina.php?idpagina=3622.
- Mohan, D., Pittman, C.U., Steele, P.H., 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20 (3), 848-889. https://doi.org/10.1021/ ef0502397.
- Molino, A., Larocca, V., Chianese, S., Musmarra, D., 2018. Biofuels production by biomass gasification: a review. Energies 11 (4), 1-31. https://doi.org/10.3390/ en11040811.
- Nallathambi Gunaseelan, V., 1998. Anaerobic digestion of biomass for methane production -a review. Fuel and Energy Abstracts 39 (3), 197. https://doi.org/ 10.1016/s0140-6701(98)80376-7.
- Niazi, L., Lashanizadegan, A., Sharififard, H., 2018. Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J. Cleaner Prod. 185, 554-561. https://doi.org/ 10.1016/j.jclepro.2018.03.026.
- Nsaful, F., Collard, F.X., Carrier, M., Görgens, J.F., Knoetze, J.H., 2015. Lignocellulose pyrolysis with condensable volatiles quantification by thermogravimetric analysis -Thermal desorption/gas chromatography-mass spectrometry method. J. Anal. Appl. Pyrol. 116, 86-95. https://doi.org/10.1016/ j.jaap.2015.10.002.
- Oudenhoven, S.R.G., Westerhof, R.J.M., Aldenkamp, N., Brilman, D.W.F., Kersten, S.R. A., 2013. Demineralization of wood using wood-derived acid: towards a selective pyrolysis process for fuel and chemicals production. J. Anal. Appl. Pyrol. 103, 112-118. https://doi.org/10.1016/j.jaap.2012.10.002.
- Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K., 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3 (1), 10. https://doi.org/10.1186/ 1754-6834-3-10.
- Park, Y.K., Yoo, M.L., Heo, H.S., Lee, H.W., Park, S.H., Jung, S.C., Seo, S.G., 2012. Wild reed of Suncheon Bay: Potential bio-energy source. Renew. Energy 42, 168-172. https://doi.org/10.1016/j.renene.2011.08.025.
- Perego, C., Bosetti, A., 2011. Biomass to fuels: The role of zeolite and mesoporous materials. Microporous Mesoporous Mater. 144 (1-3), 28-39. https://doi.org/ 10.1016/j.micromeso.2010.11.034.
- Pérez, S., Mazeau, K., 2010. Conformations, Structures, and Morphologies of Celluloses. Polysaccharides. https://doi.org/10.1201/9781420030822.ch2.
- Raveendran, K., Ganesh, A., Khilar, K.C., 1996. Pyrolysis characteristics of biomass and biomass components. Fuel 75 (8), 987-998. https://doi.org/10.1016/0016- 2361(96)00030-0.
- Rodriguez Correa, C., Otto, T., Kruse, A., 2017. Influence of the biomass components on the pore formation of activated carbon. Biomass Bioenergy 97, 53-64. https://doi.org/10.1016/j.biombioe.2016.12.017.
- Rowell, R.M., Pettersen, R., Tshabalala, M.A., 2012. Cell wall chemistry. In: Handbook of Wood Chemistry and Wood Composites. 2nd ed., pp. 33-72. https://doi.org/ 10.1201/b12487.
- Saldarriaga, J.F., Aguado, R., Pablos, A., Amutio, M., Olazar, M., Bilbao, J., 2015. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel 140, 744-751. https://doi.org/10.1016/j.fuel.2014.10.024.
- Shi, D., Vohs, J.M., 2018. TPD and HREELS study of the reaction of guaiacol on Zn- decorated Pt(111). Catal. Today 302 (December 2016), 272-276. https://doi.org/ 10.1016/j.cattod.2017.07.002.
- Sitthisa, S., An, W., Resasco, D.E., 2011. Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J. Catal. 284 (1), 90-101. https://doi.org/10.1016/j.jcat.2011.09.005.
- Sun, B., Yu, J., Tahmasebi, A., Han, Y., 2014. An experimental study on binderless briquetting of Chinese lignite: effects of briquetting conditions. Fuel Process. Technol. 124, 243-248. https://doi.org/10.1016/j.fuproc.2014.03.013.
- Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., Ståhl, K., 2005. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12 (6), 563-576. https://doi.org/10.1007/s10570-005-9001-8.
- Trninié, M., Stojiljkovié, D., Jovovié, A., Jankes, G., 2016. Biomass gasification technology: the state of the art overview. J. Energy Chem. 25 (1), 10-25. https:// doi.org/10.1016/j.jechem.2015.11.005.
- Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., Dewil, R., 2010. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew. Energy 35 (1), 232-242. https://doi.org/10.1016/j.renene.2009.04.019.
- Wang, N., Tahmasebi, A., Yu, J., Xu, J., Huang, F., Mamaeva, A., 2015a. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresour. Technol. 190, 89-96. https://doi.org/10.1016/j.biortech.2015.04.038.
- Wang, S., Dai, G., Yang, H., Luo, Z., 2017. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog. Energy Combust. Sci. 62, 33-86. https://doi.org/10.1016/j.pecs.2017.05.004.
- Wang, S., Ru, B., Lin, H., Sun, W., 2015b. Pyrolysis behaviors of four O-acetyl- preserved hemicelluloses isolated from hardwoods and softwoods. Fuel 150, 243-251. https://doi.org/10.1016/j.fuel.2015.02.045.
- Wang, W., Shi, Y., Cui, Y., Li, X., 2018a. Catalytic fast pyrolysis of cellulose for increasing contents of furans and aromatics in biofuel production. J. Anal. Appl. Pyrol. 131 (October 2017), 93-100. https://doi.org/10.1016/j.jaap.2018.02.004.
- Wang, X., Chen, W., Li, Z., Zeng, X., Tang, X., Sun, Y., Lin, L., 2018b. Synthesis of bis (amino)furans from biomass based 5-hydroxymethyl furfural. J. Energy Chem. 27 (1), 209-214. https://doi.org/10.1016/j.jechem.2017.06.015.
- Weingarten, R., Rodriguez-Beuerman, A., Cao, F., Luterbacher, J.S., Alonso, M., Dumesic, J.A., Huber, G.W., 2014. Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents. ChemCatChem 6, 2229- 2234. https://doi.org/10.1002/cctc.201402299.
- Wu, S., Shen, D., Hu, J., Zhang, H., Xiao, R., 2016a. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy 95, 55-63. https://doi.org/10.1016/j. biombioe.2016.09.015.
- Wu, S., Shen, D., Hu, J., Zhang, H., Xiao, R., 2016b. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy 90, 209-2017. https://doi.org/10.1016/j.biombioe.2016.04.012.
- Xu, D., Cao, J., Li, Y., Howard, A., Yu, K., 2019. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: a case study on ammonium adsorption capacity. Waste Manage. 87, 652-660. https://doi.org/ 10.1016/j.wasman.2019.02.049.
- Xu, W., Zhao, Q., Wang, R., Jiang, Z., Zhang, Z., Gao, X., Ye, Z., 2017. Optimization of organic pollutants removal from soil eluent by activated carbon derived from peanut shells using response surface methodology. Vacuum 141, 307-315. https://doi.org/10.1016/j.vacuum.2017.04.031.
- Yemis ß, O., Mazza, G., 2011. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour. Technol. 102 (15), 7371-7378. https://doi.org/10.1016/j.biortech.2011.04.050.
- Yu, S., Park, J., Kim, M., Ryu, C., Park, J., 2019. Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Bioresource Technol. Rep. 6 (March), 217-222. https://doi.org/10.1016/j.biteb.2019.03.009.
- Zhang, Y.H.P., Lynd, L.R., 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88 (7), 797-824. https://doi.org/10.1002/bit.20282.
- Zhang, Z., Zhu, M., Zhang, D., 2018. A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass. Appl. Energy 220 (October 2017), 87-93. https://doi.org/10.1016/j.apenergy.2018.03.057.