Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study (original) (raw)

Abstract

In this study, pyrolysis of residual biomass from the agro-alimentary industry of Argentina was investigated. The studied biomasses were rice husk, peanut shell and wheat straw. The effect of pyrolysis temperature over solid (bio-char), liquid (bio-oil) and gas (bio-gas) fractions weight yields were evaluated for each biomass, in the range of 350-650°C. The maximum yield of bio-oil was obtained at 550°C for rice husk (45 wt%) and wheat straw (58 wt%), and at 500°C for peanut shells (51 wt%). At those temperatures, the data recorded the smallest spread around the mean. Different characterization techniques of raw biomass were reported, namely, thermal behavior; proximate and ultimate analysis; content of Ca, Al, K, Si and Fe; and hemicellulose, cellulose and lignin composition. Bio-oils characterization included water content and chemical compounds identification. Furthermore, bio-char HHV and BET surface area were measured. Rice husk bio-oil showed 21% selectivity towards furans of which 75% corresponded to furfural and 5-HMF. Peanut shell bio-char presented the highest Higher Heating Value (7250 kcal/kg) and BET surface area (215 m 2 /g). In addition, co-pyrolysis reactions and the synergistic effects over obtained products completed this study. Co-pyrolysis bio-oils yields varied between 41 and 46 wt%, for all the mixtures. Bio-oil water content decreased up to 15% for rice husk mixed with peanut shell or wheat straw. Moreover, 5-HMF was detected in all bio-oils, and furfural selectivity was higher than 5% in the three mixtures investigated.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (77)

  1. Adam, F., Retnam, P., Iqbal, A., 2009. The complete conversion of cyclohexane into cyclohexanol and cyclohexanone by a simple silica-chromium heterogeneous catalyst. Appl. Catal. A 357 (1), 93-99. https://doi.org/10.1016/j. apcata.2009.01.017.
  2. Akhtar, J., Saidina Amin, N., 2012. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. Sustain. Energy Rev. 16 (7), 5101- 5109. https://doi.org/10.1016/j.rser.2012.05.033.
  3. Alasino, M.C., 2009. Harina de arveja en la elaboración de pan. Estudio del efecto de emulsionantes como mejoradores de volumen y vida útil., 178
  4. Alemdar, A., Sain, M., 2008. Isolation and characterization of nanofibers from agricultural residues -Wheat straw and soy hulls. Bioresour. Technol. 99 (6), 1664-1671. https://doi.org/10.1016/j.biortech.2007.04.029.
  5. Arcanjo, M.R.A., Silva, I.J., Rodríguez-Castellón, E., Infantes-Molina, A., Vieira, R.S., 2017. Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catal. Today 279, 317-326. https://doi.org/10.1016/ j.cattod.2016.02.015.
  6. Atalla, R.H., Vanderhart, D.L., 1984. Native cellulose: a composite of two distinct crystalline forms. Science 223, 283-285. https://doi.org/
  7. 1126/science.223.4633.283.
  8. Balasundram, V., Ibrahim, N., Kasmani, R.M., Hamid, M.K.A., Isha, R., Hasbullah, H., Ali, R.R., 2018. Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil. J. Cleaner Prod. 167, 218-228. https://doi.org/10.1016/j.jclepro.2017.08.173\. Balasundram, V., Ibrahim, N., Samsudin, M.D.H., Kasmani, R.M., Abd Hamidb, M.K., Ishac, R., Hasbullah, H., 2017. Thermogravimetric Studies on the Catalytic Pyrolysis of Rice Husk. Chem. Eng. Trans. 56 (May), 427-432. https://doi.org/ 10.3303/CET1756072.
  9. Bolsa de Comercio de Córdoba, 2006. Encadenamiento productivo del maní. In: El Balance de la Economía Argentina 2006. Una nueva oportunidad. Córdoba Bolsa de Comercio de Córdoba, pp. 531-548.
  10. Bragachini, M., Mathier, D., 2016. La Bioenergía en el Sector Agropecuario Argentino como Herramienta para el Agregado de Valor en Origen. In: Manfredi, I. (Ed.), 15°Curso
  11. Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60 (2), 309-319. https://doi.org/10.1021/ja01269a023.
  12. Bustin, R.M., Guo, Y., 1999. Abrupt changes z ˇjumps / in reflectance values and chemical compositions of artificial charcoals and inertinite in coals.
  13. Cai, W., Liu, Q., Shen, D., Wang, J., 2018. Py-GC/MS analysis on product distribution of two-staged biomass pyrolysis. J. Anal. Appl. Pyrol. https://doi.org/10.1016/ j.jaap.2018.12.007.
  14. Centro Internacional de Agricultura Tropical. 2010. Produccion Eco-Eficiente del Arroz en America Latina Tomo I. In: Produccion Eco-Eficiente del Arroz en America Latina Tomo I. Cali.
  15. Chynoweth, D.P., Owens, J.M., Legrand, R., 2000. Renewable methane from anaerobic digestion of biomass. Renew. Energy 22 (1-3), 1-8. https://doi.org/ 10.1016/S0960-1481(00)00019-7.
  16. Coates, J., 2006. Interpretation of Infrared Spectra, A Practical Approach. 1-23. doi:10.1002/9780470027318.a5606.
  17. De Cordoba, M.C.F., Matos, J., Montaña, R., Poon, P.S., Lanfredi, S., Praxedes, F.R.Ania, C.O., 2018. Sunlight photoactivity of rice husks-derived biogenic silica. Catalysis Today (December). https://doi.org/S0920586118311313.
  18. Corma Canos, A., Iborra, S., Velty, A., 2007. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107 (6), 2411-2502. https://doi.org/ 10.1021/cr050989d.
  19. Czernik, S., Bridgwater, A.V., 2004. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18 (2), 590-598. https://doi.org/10.1021/ef034067u.
  20. Davarpanah, J., Sayahi, M.H., Ghahremani, M., Karkhoei, S., 2019. Synthesis and characterization of nano acid catalyst derived from rice husk silica and its application for the synthesis of 3,4-dihydropyrimidinones/thiones compounds. J. Mol. Struct. https://doi.org/10.1016/j.molstruc.2018.12.113.
  21. Dhyani, V., Bhaskar, T., 2017. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy. https://doi.org/10.1016/j. renene.2017.04.035.
  22. Dhyani, V., Bhaskar, T., 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 129, 695-716. https://doi.org/10.1016/ j.renene.2017.04.035.
  23. FAO. 2009. Análisis del Balance de Energía derivada de Biomasa en Argentina - Wisdom Argentina. 118. Retrieved from http://www.fao.org/docrep/011/ i0900s/i0900s00.htm.
  24. Fernandes, I.J., Calheiro, D., Kieling, A.G., Moraes, C.A.M., Rocha, T.L.A.C., Brehm, F.A., Modolo, R.C.E., 2016. Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 165, 351-359. https://doi.org/ 10.1016/j.fuel.2015.10.086.
  25. French, A.D., 2014. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21 (2), 885-896. https://doi.org/10.1007/s10570-013-0030-4.
  26. Friedl, A., Padouvas, E., Rotter, H., Varmuza, K., 2005. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta 544 (1-2 SPEC. ISS.), 191-198. https://doi.org/10.1016/j.aca.2005.01.041.
  27. Fu, Y., Shen, Y., Zhang, Z., Ge, X., Chen, M., 2019. Activated bio-chars derived from rice husk via one-and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 646, 1567-1577. https://doi.org/10.1016/j. scitotenv.2018.07.423.
  28. Gaggiotti, M.C., Romero, L.A., Bruno, O.A., Comeron, E.A., Quaino, O.R., 1996. TABLA DE COMPOSICIÓN QUÍMICA DE ALIMENTOS : I -forrajes conservados. INTA. Centro Regional Santa Fe. EEA Rafaela (1).
  29. Gani, A., Naruse, I., 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew. Energy 32 (4), 649-661. https://doi.org/10.1016/j.renene.2006.02.017.
  30. Gao, Z., Li, N., Yin, S., Yi, W., 2019. Pyrolysis behavior of cellulose in a fixed bed reactor: residue evolution and effects of parameters on products distribution and bio-oil composition. Energy 175, 1067-1074. https://doi.org/10.1016/j. energy.2019.03.094.
  31. García, J.R., Bertero, M., Falco, M., Sedran, U., 2015. Catalytic cracking of bio-oils improved by the formation of mesopores by means of y zeolite desilication. Appl. Catal. A 503, 1-8. https://doi.org/10.1016/j.apcata.2014.11.005.
  32. Geissdoerfer, M., Savaget, P., Bocken, N.M.P., Hultink, E.J., 2017. The Circular Economy -A new sustainability paradigm? J. Cleaner Prod. 143, 757-768. https://doi.org/10.1016/j.jclepro.2016.12.048.
  33. Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L., 2017. Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells. Renew. Energy 114, 697-707. https://doi. org/10.1016/j.renene.2017.07.065.
  34. Han, L., Wang, Q., Ma, Q., Yu, C., Luo, Z., Cen, K., 2010. Influence of CaO additives on wheat-straw pyrolysis as determined by TG-FTIR analysis. J. Anal. Appl. Pyrol. 88 (2), 199-206. https://doi.org/10.1016/j.jaap.2010.04.007.
  35. Hu, X., Guo, H., Gholizadeh, M., Sattari, B., Liu, Q., 2019. Pyrolysis of different wood species: impacts of C/H ratio in feedstock on distribution of pyrolysis products. Biomass Bioenergy 120 (July 2018), 28-39. https://doi.org/10.1016/j. biombioe.2018.10.021.
  36. Ibrahim, N., Jensen, P.A., Johansen, D.M., Ali, R.R., Kasmani, M.R., 2012. Influence of reaction temperature and water content on wheat straw pyrolysis. World Academy of Science, Engineering and Technology.
  37. Idrees, M., Rangari, V., Jeelani, S., 2018. Sustainable packaging waste-derived activated carbon for carbon dioxide capture. J. CO2 Util. 26 (March), 380-387. https://doi.org/10.1016/j.jcou.2018.05.016.
  38. Islam, M.S., Kao, N., Bhattacharya, S.N., Gupta, R., Choi, H.J., 2018. Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. Chin. J. Chem. Eng. 26 (3), 465-476. https://doi.org/10.1016/j.cjche.2017.07.004.
  39. Jaurena, G., Wawrzkiewicz, M., 2013. evaluación de forrajes y alimentos Guía de procedimientos analíticos. 1-62.
  40. Kan, T., Strezov, V., Evans, T.J., 2016. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 57, 126-1140. https://doi.org/10.1016/j.rser.2015.12.185.
  41. Lee, J., Yang, X., Cho, S.H., Kim, J.K., Lee, S.S., Tsang, D.C.W., Kwon, E.E., 2017. Pyrolysis process of agricultural waste using CO2for waste management, energy recovery, and biochar fabrication. Appl. Energy 185, 214-222. https://doi.org/ 10.1016/j.apenergy.2016.10.092.
  42. Meng, F., Yu, J., Tahmasebi, A., Han, Y., Zhao, H., Lucas, J., Wall, T., 2013. Characteristics of Chars from Low-Temperature Pyrolysis of Lignite.
  43. Ministerio de Energía y Minería -Subsecretaría de Energía -República Argentina. 2018. Tabla de conversiones energéticas. Retrieved October 31, 2018, from http://www.energia.gob.ar/contenidos/verpagina.php?idpagina=3622.
  44. Mohan, D., Pittman, C.U., Steele, P.H., 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20 (3), 848-889. https://doi.org/10.1021/ ef0502397.
  45. Molino, A., Larocca, V., Chianese, S., Musmarra, D., 2018. Biofuels production by biomass gasification: a review. Energies 11 (4), 1-31. https://doi.org/10.3390/ en11040811.
  46. Nallathambi Gunaseelan, V., 1998. Anaerobic digestion of biomass for methane production -a review. Fuel and Energy Abstracts 39 (3), 197. https://doi.org/ 10.1016/s0140-6701(98)80376-7.
  47. Niazi, L., Lashanizadegan, A., Sharififard, H., 2018. Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J. Cleaner Prod. 185, 554-561. https://doi.org/ 10.1016/j.jclepro.2018.03.026.
  48. Nsaful, F., Collard, F.X., Carrier, M., Görgens, J.F., Knoetze, J.H., 2015. Lignocellulose pyrolysis with condensable volatiles quantification by thermogravimetric analysis -Thermal desorption/gas chromatography-mass spectrometry method. J. Anal. Appl. Pyrol. 116, 86-95. https://doi.org/10.1016/ j.jaap.2015.10.002.
  49. Oudenhoven, S.R.G., Westerhof, R.J.M., Aldenkamp, N., Brilman, D.W.F., Kersten, S.R. A., 2013. Demineralization of wood using wood-derived acid: towards a selective pyrolysis process for fuel and chemicals production. J. Anal. Appl. Pyrol. 103, 112-118. https://doi.org/10.1016/j.jaap.2012.10.002.
  50. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K., 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3 (1), 10. https://doi.org/10.1186/ 1754-6834-3-10.
  51. Park, Y.K., Yoo, M.L., Heo, H.S., Lee, H.W., Park, S.H., Jung, S.C., Seo, S.G., 2012. Wild reed of Suncheon Bay: Potential bio-energy source. Renew. Energy 42, 168-172. https://doi.org/10.1016/j.renene.2011.08.025.
  52. Perego, C., Bosetti, A., 2011. Biomass to fuels: The role of zeolite and mesoporous materials. Microporous Mesoporous Mater. 144 (1-3), 28-39. https://doi.org/ 10.1016/j.micromeso.2010.11.034.
  53. Pérez, S., Mazeau, K., 2010. Conformations, Structures, and Morphologies of Celluloses. Polysaccharides. https://doi.org/10.1201/9781420030822.ch2.
  54. Raveendran, K., Ganesh, A., Khilar, K.C., 1996. Pyrolysis characteristics of biomass and biomass components. Fuel 75 (8), 987-998. https://doi.org/10.1016/0016- 2361(96)00030-0.
  55. Rodriguez Correa, C., Otto, T., Kruse, A., 2017. Influence of the biomass components on the pore formation of activated carbon. Biomass Bioenergy 97, 53-64. https://doi.org/10.1016/j.biombioe.2016.12.017.
  56. Rowell, R.M., Pettersen, R., Tshabalala, M.A., 2012. Cell wall chemistry. In: Handbook of Wood Chemistry and Wood Composites. 2nd ed., pp. 33-72. https://doi.org/ 10.1201/b12487.
  57. Saldarriaga, J.F., Aguado, R., Pablos, A., Amutio, M., Olazar, M., Bilbao, J., 2015. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel 140, 744-751. https://doi.org/10.1016/j.fuel.2014.10.024.
  58. Shi, D., Vohs, J.M., 2018. TPD and HREELS study of the reaction of guaiacol on Zn- decorated Pt(111). Catal. Today 302 (December 2016), 272-276. https://doi.org/ 10.1016/j.cattod.2017.07.002.
  59. Sitthisa, S., An, W., Resasco, D.E., 2011. Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J. Catal. 284 (1), 90-101. https://doi.org/10.1016/j.jcat.2011.09.005.
  60. Sun, B., Yu, J., Tahmasebi, A., Han, Y., 2014. An experimental study on binderless briquetting of Chinese lignite: effects of briquetting conditions. Fuel Process. Technol. 124, 243-248. https://doi.org/10.1016/j.fuproc.2014.03.013.
  61. Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., Ståhl, K., 2005. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12 (6), 563-576. https://doi.org/10.1007/s10570-005-9001-8.
  62. Trninié, M., Stojiljkovié, D., Jovovié, A., Jankes, G., 2016. Biomass gasification technology: the state of the art overview. J. Energy Chem. 25 (1), 10-25. https:// doi.org/10.1016/j.jechem.2015.11.005.
  63. Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., Dewil, R., 2010. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew. Energy 35 (1), 232-242. https://doi.org/10.1016/j.renene.2009.04.019.
  64. Wang, N., Tahmasebi, A., Yu, J., Xu, J., Huang, F., Mamaeva, A., 2015a. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresour. Technol. 190, 89-96. https://doi.org/10.1016/j.biortech.2015.04.038.
  65. Wang, S., Dai, G., Yang, H., Luo, Z., 2017. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog. Energy Combust. Sci. 62, 33-86. https://doi.org/10.1016/j.pecs.2017.05.004.
  66. Wang, S., Ru, B., Lin, H., Sun, W., 2015b. Pyrolysis behaviors of four O-acetyl- preserved hemicelluloses isolated from hardwoods and softwoods. Fuel 150, 243-251. https://doi.org/10.1016/j.fuel.2015.02.045.
  67. Wang, W., Shi, Y., Cui, Y., Li, X., 2018a. Catalytic fast pyrolysis of cellulose for increasing contents of furans and aromatics in biofuel production. J. Anal. Appl. Pyrol. 131 (October 2017), 93-100. https://doi.org/10.1016/j.jaap.2018.02.004.
  68. Wang, X., Chen, W., Li, Z., Zeng, X., Tang, X., Sun, Y., Lin, L., 2018b. Synthesis of bis (amino)furans from biomass based 5-hydroxymethyl furfural. J. Energy Chem. 27 (1), 209-214. https://doi.org/10.1016/j.jechem.2017.06.015.
  69. Weingarten, R., Rodriguez-Beuerman, A., Cao, F., Luterbacher, J.S., Alonso, M., Dumesic, J.A., Huber, G.W., 2014. Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents. ChemCatChem 6, 2229- 2234. https://doi.org/10.1002/cctc.201402299.
  70. Wu, S., Shen, D., Hu, J., Zhang, H., Xiao, R., 2016a. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy 95, 55-63. https://doi.org/10.1016/j. biombioe.2016.09.015.
  71. Wu, S., Shen, D., Hu, J., Zhang, H., Xiao, R., 2016b. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy 90, 209-2017. https://doi.org/10.1016/j.biombioe.2016.04.012.
  72. Xu, D., Cao, J., Li, Y., Howard, A., Yu, K., 2019. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: a case study on ammonium adsorption capacity. Waste Manage. 87, 652-660. https://doi.org/ 10.1016/j.wasman.2019.02.049.
  73. Xu, W., Zhao, Q., Wang, R., Jiang, Z., Zhang, Z., Gao, X., Ye, Z., 2017. Optimization of organic pollutants removal from soil eluent by activated carbon derived from peanut shells using response surface methodology. Vacuum 141, 307-315. https://doi.org/10.1016/j.vacuum.2017.04.031.
  74. Yemis ß, O., Mazza, G., 2011. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour. Technol. 102 (15), 7371-7378. https://doi.org/10.1016/j.biortech.2011.04.050.
  75. Yu, S., Park, J., Kim, M., Ryu, C., Park, J., 2019. Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Bioresource Technol. Rep. 6 (March), 217-222. https://doi.org/10.1016/j.biteb.2019.03.009.
  76. Zhang, Y.H.P., Lynd, L.R., 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88 (7), 797-824. https://doi.org/10.1002/bit.20282.
  77. Zhang, Z., Zhu, M., Zhang, D., 2018. A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass. Appl. Energy 220 (October 2017), 87-93. https://doi.org/10.1016/j.apenergy.2018.03.057.