A practical approach for predicting retention time shifts due to pressure and temperature gradients in ultra-high-pressure liquid chromatography (original) (raw)
Abstract
Large pressure gradients are generated in ultra-high-pressure liquid chromatography (UHPLC) using sub-2μm particles causing significant temperature gradients over the column due to viscous heating. These pressure and temperature gradients affect retention and ultimately result in important selectivity shifts. In this study, we developed an approach for predicting the retention time shifts due to these gradients. The approach is presented as a step-by-step procedure and it is based on empirical linear relationships describing how retention varies as a function of temperature and pressure and how the average column temperature increases with the flow rate. It requires only four experiments on standard equipment, is based on straightforward calculations, and is therefore easy to use in method development. The approach was rigorously validated against experimental data obtained with a quality control method for the active pharmaceutical ingredient omeprazole. The accuracy of retention t...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (48)
- M.W. Dong, K. Zhang, Ultra-high-pressure liquid chromatography (UHPLC) in method development, TrAC. 63 (2014) 21-30. doi:10.1016/j.trac.2014.06.019.
- M. Szalka, J. Kostka, E. Rokaszewski, K. Kaczmarski, Analysis of related substances in bisoprolol fumarate on sub-2-μm adsorbents, Acta Chromatogr. 24 (2012) 163-183. doi:10.1556/AChrom.24.2012.2.2.
- D. Åsberg, M. Nilsson, S. Olsson, J. Samuelsson, O. Svensson, S. Klick, J. Ennis, P. Butterworth, D. Watt, S. Iliadou, A. Karlsson, J.T. Walker, K. Arnot, N. Ealer, K. Hernqvist, K. Svensson, A. Grinell, P.- O. Quist, A. Karlsson, T. Fornstedt, A quality control method enhancement concept-Continual improvement of regulatory approved QC methods, J. Pharm. Biomed. Anal. 129 (2016) 273-281. doi:10.1016/j.jpba.2016.06.018.
- R. Holm, D.P. Elder, Analytical advances in pharmaceutical impurity profiling, Eur. J. Pharm. Sci. 87 (2016) 118-135. doi:10.1016/j.ejps.2015.12.007.
- V. González-Ruiz, A.I. Olives, M.A. Martín, Core-shell particles lead the way to renewing high- performance liquid chromatography, TrAC. 64 (2015) 17-28. doi:10.1016/j.trac.2014.08.008.
- J. De Vos, M. De Pra, G. Desmet, R. Swart, T. Edge, F. Steiner, S. Eeltink, High-speed isocratic and gradient liquid-chromatography separations at 1500 bar, J. Chromatogr. A. 1409 (2015) 138-145. doi:10.1016/j.chroma.2015.07.043.
- N. Tanaka, D.V. McCalley, Core-Shell, Ultrasmall Particles, Monoliths, and Other Support Materials in High-Performance Liquid Chromatography, Anal. Chem. 88 (2016) 279-298. doi:10.1021/acs.analchem.5b04093.
- S. Görög, The changing face of pharmaceutical analysis, TrAC. 26 (2007) 12-17. doi:10.1016/j.trac.2006.07.011.
- D. Åsberg, M. Leśko, J. Samuelsson, K. Kaczmarski, T. Fornstedt, Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. I. A thermodynamic perspective, J. Chromatogr. A. 1362 (2014) 206-217. doi:10.1016/j.chroma.2014.08.051.
- D. Åsberg, J. Samuelsson, M. Leśko, A. Cavazzini, K. Kaczmarski, T. Fornstedt, Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects, J. Chromatogr. A. 1401 (2015) 52-59. doi:10.1016/j.chroma.2015.05.002.
- F. Gritti, G. Guiochon, Complete Temperature Profiles in Ultra-High-Pressure Liquid Chromatography Columns, Anal. Chem. 80 (2008) 5009-5020. doi:10.1021/ac800280c.
- F. Gritti, M. Martin, G. Guiochon, Influence of Viscous Friction Heating on the Efficiency of Columns Operated under Very High Pressures, Anal. Chem. 81 (2009) 3365-3384. doi:10.1021/ac802632x.
- K. Kaczmarski, J. Kostka, W. Zapała, G. Guiochon, Modeling of thermal processes in high pressure liquid chromatography: I. Low pressure onset of thermal heterogeneity, J. Chromatogr. A. 1216 (2009) 6560-6574. doi:10.1016/j.chroma.2009.07.020.
- K. Kaczmarski, F. Gritti, J. Kostka, G. Guiochon, Modeling of thermal processes in high pressure liquid chromatography: II. Thermal heterogeneity at very high pressures, J. Chromatogr. A. 1216 (2009) 6575-6586. doi:10.1016/j.chroma.2009.07.049.
- S. Fekete, J. Fekete, D. Guillarme, Estimation of the effects of longitudinal temperature gradients caused by frictional heating on the solute retention using fully porous and superficially porous sub- 2 μm materials, J. Chromatogr. A. 1359 (2014) 124-130. doi:10.1016/j.chroma.2014.07.030.
- F. Gritti, G. Guiochon, Mass transfer resistance in narrow-bore columns packed with 1.7 µm particles in very high pressure liquid chromatography, J. Chromatogr. A. 1217 (2010) 5069-5083. doi:10.1016/j.chroma.2010.05.059.
- J. Kostka, F. Gritti, K. Kaczmarski, G. Guiochon, Modified Equilibrium-Dispersive Model for the interpretation of the efficiency of columns packed with core-shell particle, J. Chromatogr. A. 1218 (2011) 5449-5455. doi:10.1016/j.chroma.2011.06.019.
- F. Gritti, G. Guiochon, Comparison of heat friction effects in narrow-bore columns packed with core- shell and totally porous particles, Chem. Eng. Sci. 65 (2010) 6310-6319. doi:10.1016/j.ces.2010.09.019.
- D. Åsberg, J. Samuelsson, T. Fornstedt, A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography, J. Chromatogr. A. 1457 (2016) 97- 106. doi:10.1016/j.chroma.2016.06.036.
- M.M. Fallas, U.D. Neue, M.R. Hadley, D.V. McCalley, Investigation of the effect of pressure on retention of small molecules using reversed-phase ultra-high-pressure liquid chromatography, J. Chromatogr. A. 1209 (2008) 195-205. doi:10.1016/j.chroma.2008.09.021.
- M.M. Fallas, U.D. Neue, M.R. Hadley, D.V. McCalley, Further investigations of the effect of pressure on retention in ultra-high-pressure liquid chromatography, J. Chromatogr. A. 1217 (2010) 276-284. doi:10.1016/j.chroma.2009.11.041.
- S. Fekete, J.-L. Veuthey, D.V. McCalley, D. Guillarme, The effect of pressure and mobile phase velocity on the retention properties of small analytes and large biomolecules in ultra-high pressure liquid chromatography, J. Chromatogr. A. 1270 (2012) 127-138. doi:10.1016/j.chroma.2012.10.056.
- D.V. McCalley, The impact of pressure and frictional heating on retention, selectivity and efficiency in ultra-high-pressure liquid chromatography, TrAC. 63 (2014) 31-43. doi:10.1016/j.trac.2014.06.024.
- A. Makarov, R. LoBrutto, P. Karpinski, Y. Kazakevich, C. Christodoulatos, A.K. Ganguly, Investigation of the Effect of Pressure and Liophilic Mobile Phase Additives on Retention of Small Molecules and Proteins Using Reversed-Phase Ultrahigh Pressure Liquid Chromatography, J. Liq. Chromatogr. Related Technol. 35 (2012) 407-427. doi:10.1080/10826076.2011.601494.
- A. de Villiers, H. Lauer, R. Szucs, S. Goodall, P. Sandra, Influence of frictional heating on temperature gradients in ultra-high-pressure liquid chromatography on 2.1 mm I.D. columns, J. Chromatogr. A. 1113 (2006) 84-91. doi:10.1016/j.chroma.2006.01.120.
- J. Billen, K. Broeckhoven, A. Liekens, K. Choikhet, G. Rozing, G. Desmet, Influence of pressure and temperature on the physico-chemical properties of mobile phase mixtures commonly used in high- performance liquid chromatography, J. Chromatogr.
- A. 1210 (2008) 30-44. doi:10.1016/j.chroma.2008.09.056.
- K. Kaczmarski, G. Guiochon, Modeling of the Mass-Transfer Kinetics in Chromatographic Columns Packed with Shell and Pellicular Particles, Anal. Chem. 79 (2007) 4648-4656. doi:10.1021/ac070209w.
- F. Gritti, A. Cavazzini, N. Marchetti, G. Guiochon, Comparison between the efficiencies of columns packed with fully and partially porous C18-bonded silica materials, J. Chromatogr. A. 1157 (2007) 289-303. doi:10.1016/j.chroma.2007.05.030.
- D. Antos, K. Kaczmarski, P. Wojciech, A. Seidel-Morgenstern, Concentration dependence of lumped mass transfer coefficients: Linear versus non-linear chromatography and isocratic versus gradient operation, J. Chromatogr. A. 1006 (2003) 61-76. doi:10.1016/S0021-9673(03)00948-8.
- B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The properties of gases and liquids, 5th ed., McGraw-Hill Professional, 2001. doi:10.1036/0070116822.
- G. Guiochon, D.G. Shirazi, A. Felinger, A.M. Katti, Fundamentals of preparative and nonlinear chromatography, 2nd ed., Academic Press, Boston, MA, 2006.
- E.J. Wilson, C.J. Geankoplis, Liquid Mass Transfer at Very Low Reynolds Numbers in Packed Beds, Ind. Eng. Chem. Fund. 5 (1966) 9-14. doi:10.1021/i160017a002.
- J.H. Knox, G.R. Laird, P.A. Raven, Interaction of radial and axial dispersion in liquid chromatography in relation to the -infinite diameter effect,‖ J. Chromatogr. A. 122 (1976) 129-145. doi:10.1016/S0021- 9673(00)82240-2.
- F. Gritti, Y. Kazakevich, G. Guiochon, Measurement of hold-up volumes in reverse-phase liquid chromatography: Definition and comparison between static and dynamic methods, J. Chromatogr. A. 1161 (2007) 157-169. doi:10.1016/j.chroma.2007.05.102.
- D. Åsberg, M. Leśko, J. Samuelsson, A. Karlsson, K. Kaczmarski, T. Fornstedt, Combining Chemometric Models with Adsorption Isotherm Measurements to Study Omeprazole in RP-LC, Chromatographia. 79 (2016) 1283-1291. doi:10.1007/s10337-016-3151-8.
- T. Undin, J. Samuelsson, A. Törncrona, T. Fornstedt, Evaluation of a combined linear-nonlinear approach for column characterization using modern alkaline-stable columns as model, J. Sep. Sci. 36 (2013) 1753-1761. doi:10.1002/jssc.201201132.
- E. Bosch, P. Bou, H. Allemann, M. Rosés, Retention of Ionizable Compounds on HPLC. pH Scale in Methanol-Water and the pK and pH Values of Buffers, Anal. Chem. 68 (1996) 3651-3657. doi:10.1021/ac960104l.
- S.M.C. Buckenmaier, D.V. McCalley, M.R. Euerby, Determination of ionisation constants of organic bases in aqueous methanol solutions using capillary electrophoresis, J. Chromatogr. A. 1026 (2004) 251-259. doi:10.1016/j.chroma.2003.11.007.
- C.P. Samaranayake, S.K. Sastry, In Situ Measurement of pH Under High Pressure, J. Phys. Chem. B. 114 (2010) 13326-13332. doi:10.1021/jp1037602.
- K. Sue, T. Morita, K. Totsuka, Y. Takebayashi, S. Yoda, T. Furuya, T. Hiaki, Determination of Dissociation Constants of Hexanoic, Heptanoic, and Benzoic Acids to 673 K and 30 MPa by Potentiometric pH Measurements, J. Chem. Eng. Data. 55 (2010) 4823-4826. doi:10.1021/je1004164.
- F. Gritti, G. Guiochon, Heat Exchanges in Fast, High-Performance Liquid Chromatography. A Complete Thermodynamic Study, Anal. Chem. 80 (2008) 6488-6499. doi:10.1021/ac8003902.
- J. Kostka, F. Gritti, G. Guiochon, K. Kaczmarski, Modeling of thermal processes in very high pressure liquid chromatography for column immersed in a water bath: Application of the selected models, J. Chromatogr. A. 1217 (2010) 4704-4712. doi:10.1016/j.chroma.2010.05.018.
- F. Gritti, G. Guiochon, Optimization of the thermal environment of columns packed with very fine particles, J. Chromatogr. A. 1216 (2009) 1353-1362. doi:10.1016/j.chroma.2008.12.072.
- K. Kaczmarski, D.P. Poe, A. Tarafder, G. Guiochon, Efficiency of supercritical fluid chromatography columns in different thermal environments, J. Chromatogr. A. 1291 (2013) 155-173. doi:10.1016/j.chroma.2013.03.024.
- K. Kaczmarski, D.P. Poe, G. Guiochon, Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I-Elution of an unretained tracer, J. Chromatogr. A. 1217 (2010) 6578- 6587. doi:10.1016/j.chroma.2010.08.035.
- J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, 6th Ed., Pearson Education, Harlow, UK, 2010.
- L. Nováková, J.L. Veuthey, D. Guillarme, Practical method transfer from high performance liquid chromatography to ultra-high performance liquid chromatography: The importance of frictional heating, J. Chromatogr. A. 1218 (2011) 7971-7981. doi:10.1016/j.chroma.2011.08.096.