A putative internal promoter in the 16 S/23 S intergenic spacer of the rRNA operon of archaebacteria and eubacteria (original) (raw)

Characterization of intergenic spacers in two rrn operons of Enterococcus hirae ATCC 9790

Journal of bacteriology, 1993

Two DNA restriction enzyme fragments coding for the 3' termini of 16S rRNA, the 5' termini of 23S rRNA, and the intergenic spaces between them in Enterococcus hirae ATCC 9790 were cloned and sequenced. The intergenic space of one of these genes contains a tRNA(Ala) sequence, whereas the other does not. Nevertheless, the intergenic spaces contain several regions that exhibit high levels of sequence homology and are capable of forming structures with similar base pairs. An analysis of Southern blots of chromosomal DNA cut with one and two restriction enzymes indicated that E. hirae has a total of six rrn operons.

Comparative and functional analysis of the rRNA-operons and their tRNA gene complement in different lactic acid bacteria

Syst Appl Microbiol, 2005

The complete genome sequences of the lactic acid bacteria (LAB), Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus johnsonii were used to compare location, sequence, organisation, and regulation of the ribosomal RNA (rrn) operons. All rrn operons of the examined LAB diverge from the origin of replication, which is compatible with their efficient expression. All operons show a common organisation of 5 0-16S-23S-5S-3 0 structure, but differ in the number, location and specificity of the tRNA genes. In the 16S-23S intergenic spacer region, two of the five rrn operons of Lb. plantarum and three of the six of Lb. johnsonii contain tRNA-ala and tRNA-ile genes, while L. lactis has a tRNA-ala gene in all six operons. The number of tRNA genes following the 5S rRNA gene ranges up to 14, 16, and 21 for L. lactis, Lb. johnsonii and Lb. plantarum, respectively. The tRNA gene complements are similar to each other and to those of other bacteria. Micro-heterogeneity was found within the rRNA structural genes and spacer regions of each strain. In the rrn operon promoter regions of Lb. plantarum and L. lactis marked differences were found, while the promoter regions of Lb. johnsonii showed a similar tandem promoter structure in all operons. The rrn promoters of L. lactis show either a single or a tandem promoter structure. All promoters of Lb. plantarum contain two or three À10 and À35 regions, of which either zero to two were followed by an UP-element. The Lb. plantarum rrnA, rrnB, and rrnC promoter regions display similarity to the rrn promoter structure of Esherichia coli. Differences in regulation between the five Lb. plantarum promoters were studied using a low copy promoter-probe plasmid. Taking copy number and growth rate into account, a differential expression over time was shown. Although all five Lb. plantarum rrn promoters are significantly different, this study shows that their activity was very similar under the circumstances tested. An active promoter was also identified within the Lb. plantarum rrnC operon preceding a cluster of 17 tRNA genes.

Variation in 16S-23S rRNA Intergenic Spacer Regions in Photobacterium damselae: a Mosaic-Like Structure

Applied and Environmental Microbiology, 2005

Phenotypically, Photobacterium damselae subsp. piscicida and P. damselae subsp. damselae are easily distinguished. However, their 16S rRNA gene sequences are identical, and attempts to discriminate these two subspecies by molecular tools are hampered by their high level of DNA-DNA similarity. The 16S-23S rRNA internal transcribed spacers (ITS) were sequenced in two strains of Photobacterium damselae subsp. piscicida and two strains of P. damselae subsp. damselae to determine the level of molecular diversity in this DNA region. A total of 17 different ITS variants, ranging from 803 to 296 bp were found, some of which were subspecies or strain specific. The largest ITS contained four tRNA genes (tDNAs) coding for tRNA Glu(UUC) , tRNA Lys(UUU) , tRNA Val(UAC) , and tRNA Ala(GGC) . Five amplicons contained tRNA Glu(UUC) combined with two additional tRNA genes, including tRNA Lys(UUU) , tRNA Val(UAC) , or tRNA Ala(UGC) . Five amplicons contained tRNA Ile(GAU) and tRNA Ala(UGC) . Two amplicons contained tRNA Glu(UUC) and tRNA Ala(UGC) . Two different isoacceptor tRNA Ala genes (GGC and UGC anticodons) were found. The five smallest amplicons contained no tRNA genes. The tRNA-gene combinations tRNA Glu(UUC) -tRNA Val(UAC) -tRNA Ala(UGC) and tRNA Glu(UUC) -tRNA Ala(UGC) have not been previously reported in bacterial ITS regions. The number of copies of the ribosomal operon (rrn) in the P. damselae chromosome ranged from at least 9 to 12. For ITS variants coexisting in two strains of different subspecies or in strains of the same subspecies, nucleotide substitution percentages ranged from 0 to 2%. The main source of variation between ITS variants was due to different combinations of DNA sequence blocks, constituting a mosaic-like structure.

Regulatory elements downstream of the promoter of an rRNA gene of E. coli

Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1990

Previously we have shown that plasmid constructs carrying a reporter gene fused to the P2 promoter of the E. coli rrnB gene exhibited a strange two-phase kinetics of expression depending on the physiological conditions of the cell if a short DNA region downstream of the promoter was present between the promoter and the reporter gene (Lukacsovich et al. (1987) J. Bacteriol. 169, 272-277). Insertion of a synthetic oligonucleotide corresponding to the first half of this region into constructs where the reporter directly follows the promoter, leads to a complete Mock of expression in vivo, while in vitro -in a purified system -transcription is not inhibited. Band-shift experiments indicate that the putative regulatory region downstream of the promoter specifically binds protein(s) present in total bacterial extracts. 0167-4781/90/$03.50

RNA-polymerase binding at the promoters of the rRNA genes of Escherichia coli

Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 1980

The promoter region of two bacterial rRNA genes was investigated by electron-microscopic analysis of polymerase binding, transcription initiation and nitrocellulose filtration of RNA-polymerase-DNA complexes, using restriction endonuclease generated fragments of recombinant plasmids and a transducing phage. The following observations have been made: 1. Two transcription initiation sites have been located approximately 200 and 300 base pairs upstream from the beginning of the sequence coding for mature 16 S rRNA. 2. Polymerase binding at these sites can be observed electronmicroscopically and a 360 base-pair fragment containing these sites binds to nitrocellulose in the presence of RNA-polymerase. This complex dissociates even at moderately high (0.1-0.2 M) salt concentrations. Although transcription initiation is reported to be more frequent at the first of these sites, the binding is much stronger at the second site. 3. In the case of the rrnD gene, BamHI cleaves a few base pairs upstream from the first transcription start site. This cleavage destroys polymerase binding at this site but does not influence binding at the second site. 4. At higher polymerase/DNA ratio four weak but distinct and regularly spaced binding sites can be observed preceding the two initiation sites at approximately 1000, 820, 640 and 440 base pairs before the mature 16 S rRNA sequence. 5. An extremely strong binding site is located about 1300 base pairs upstream from the beginning of the 16 S rRNA sequence. Very little (if any) initiation occurs at this site. The possibility is discussed that the noninitiating binding sites preceding the two transcription start points might functionally belong to the promoter region.

Sequence Diversity in the 16S–23S Intergenic Spacer Region (ISR) of the rRNA Operons in Representatives of the Escherichia coli ECOR Collection

Journal of Molecular Evolution, 1998

The ribosomal RNA multigene family in Escherichia coli comprises seven rrn operons of similar, but not identical, sequence. Four operons (rrnC, B, G, and E) contain genes in the 16S–23S intergenic spacer region (ISR) for tRNAGlu-2 and three (rrnA, D, and H) contain genes for tRNAIle-1 and tRNAAla-1B. To increase our understanding of their molecular evolution, we have determined the ISR sequence of the seven operons in a set of 12 strains from the ECOR collection. Each operon was specifically amplified using polymerase chain reaction primers designed from genes or open reading frames located upstream of the 16S rRNA genes in E. coli K12. With a single exception (ECOR 40), ISRs containing one or two tRNA genes were found at the same respective loci as those of strain K12. Intercistronic heterogeneity already found in K12 was representative of most variation among the strains studied and the location of polymorphic sites was the same. Dispersed nucleotide substitutions were very few but 21 variable sites were found grouped in a stem-loop, although the secondary structure was conserved. Some regions were found in which a stretch of nucleotides was substituted in block by one alternative, apparently unrelated, sequence (as illustrated by the known putative insertion of rsl in K12). Except for substitutions of different sizes and insertions/deletions found in the ISR, the pattern of nucleotide variation is very similar to that found for the 16S rRNA gene in E. coli. Strains K12 and ECOR 40 showed the highest intercistronic heterogeneity. Most strains showed a strong tendency to homogenization. Concerted evolution could explain the notorious conservation of this region that is supposed to have low functional restrictions.

Intraspecific diversity of the 23S rRNA gene and the spacer region downstream in Escherichia coli

Journal of bacteriology, 1999

The molecular microevolution of the 23S rRNA gene (rrl) plus the spacer downstream has been studied by sequencing of different operons from some representative strains of the Escherichia coli ECOR collection. The rrl gene was fully sequenced in six strains showing a total of 67 polymorphic sites, a level of variation per nucleotide similar to that found for the 16S rRNA gene (rrs) in a previous study. The size of the gene was highly conserved (2902 to 2905 nucleotides). Most polymorphic sites were clustered in five secondary-structure helices. Those regions in a large number of operons were sequenced, and several variations were found. Sequences of the same helix from two different strains were often widely divergent, and no intermediate forms existed. Intercistronic variability was detected, although it seemed to be lower than for the rrs gene. The presence of two characteristic sequences was determined by PCR analysis throughout all of the strains of the ECOR collection, and some ...