Detection of Harmful Residues in Honey Using Terahertz Time-Domain Spectroscopy (original) (raw)
Related papers
2012
The Terahertz (THz) region of the electromagnetic spectrum, spanning the range between 100 GHz and 30 THz, has recently enjoyed a renaissance due to technological developments in source and detector components. With the development of THz instrumentation, applications of THz spectroscopy and imaging for quality control of food products have expanded in scope and improved in performance. This article gives an overview of the fundamentals of THz technology and a comprehensive review of applications of THz time domain spectroscopy and imaging for food quality and control. Technical challenges and future outlook for these emerging techniques are also discussed.
A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging
Comprehensive Reviews in Food Science and Food Safety, 2019
Food product safety is a public health concern. Most of the food safety analytical and detection methods are expensive, labor intensive, and time consuming. A safe, rapid, reliable, and nondestructive detection method is needed to assure consumers that food products are safe to consume. Terahertz (THz) radiation, which has properties of both microwave and infrared, can penetrate and interact with many commonly used materials. Owing to the technological developments in sources and detectors, THz spectroscopic imaging has transitioned from a laboratory-scale technique into a versatile imaging tool with many practical applications. In recent years, THz imaging has been shown to have great potential as an emerging nondestructive tool for food inspection. THz spectroscopy provides qualitative and quantitative information about food samples. The main applications of THz in food industries include detection of moisture, foreign bodies, inspection, and quality control. Other applications of THz technology in the food industry include detection of harmful compounds, antibiotics, and microorganisms. THz spectroscopy is a great tool for characterization of carbohydrates, amino acids, fatty acids, and vitamins. Despite its potential applications, THz technology has some limitations, such as limited penetration, scattering effect, limited sensitivity, and low limit of detection. THz technology is still expensive, and there is no available THz database library for food compounds. The scanning speed needs to be improved in the future generations of THz systems. Although many technological aspects need to be improved, THz technology has already been established in the food industry as a powerful tool with great detection and quantification ability. This paper reviews various applications of THz spectroscopy and imaging in the food industry.
Scientia Agropecuaria, 2021
The objective of this review is to report on the progress made so far in the development of THz spectroscopy technology with application in the food industry, as well as, to evaluate the range of frequencies used by this technology in relation to the water content of food, to find patterns in which the physicochemical characterization of food samples is most effective. From the literature reviewed, it has been found that THz spectroscopy is still in constant development, both in the physical part of the equipment and in the data processing techniques. Despite these advances, the frequency ranges in which the identification of compounds are influenced by the interference of the water composition of food have not been clearly identified, even molecular behavior of water in the frequency ranges corresponding to the spectral band of THz is still little known. When performing a meta-analysis of the data specifying the frequency ranges in relation to the water content of food samples, reported in the literature, two intervals have been identified, where the action of THz waves have a better response in terms of the quantification of water, as well as of other compounds, which are mainly evidenced in lower water content, explained by the mechanisms of water relaxation in response to the interaction of THz waves. This result suggests that the influence of water content on the quantification of compounds should be considered, as it may be under or overestimated.
Selected Aspects of Terahertz Spectroscopy in Pharmaceutical Sciences
PubMed, 2015
THz-TDS techniques are applied to investigate selected pharmaceutical samples. Investigations were performed on selected pharmaceutical samples with active pharmaceutical ingredients (API)--famotidine, ranitidine, fenofibrate, lovastatin, simvastatin, aspirin, ketoconazole, acyclovir (hydrated and non-hydrated), on excipients--lactose, glucose (hydrated and non-hydrated), Pluronic 127, and on mixtures of selected compounds. Pseudo-polymorphism effects are considered as well. Examples of the terahertz imaging technique are also given. APIs and excipients can be easily recognized in the terahertz band by their specific "fingerprints" as individual components and in mixtures. The hydration process as a variety of polymorphism can also be easily monitored using the THz technique. Moreover, terahertz light can be useful for the penetration of tablets, giving clear pictures of possible defects in tablet coatings.
Terahertz time-domain spectroscopy of edible oils
Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05–2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.
Toward quality control of food using terahertz [6799-55]
2008
Terahertz radiation or T-rays, show promise in quality control of food products. As T-rays are inherently sensitive to water, they are very suitable for moisture detection. This proves to be a valuable asset in detecting the moisture content of dried food, a critical area for some products. As T-rays are transparent to plastics, food additives can also be probed through the packaging, providing checks against a manufacturer's claims, such as the presence of certain substances in foods.
Terahertz Spectroscopy Applied to Diagnostics in Public Health: A Review
Brazilian Archives of Biology and Technology
Terahertz (THz) spectroscopy is an emerging technology that is that is bringing a number of technical breakthroughs in several scientific applications. This review aimed to describe potential applications of THz spectroscopy at the biochemistry and molecules detection for food industry, environment monitoring and diagnostics, and present the importance of such technological platform in disease control and Public Health.
Non-destructive inspection of food and technical oils by terahertz spectroscopy
Scientific Reports, 2018
Quality control and non-destructive monitoring are of notable interest of food and pharmaceutical industries. It relies on the ability of non-invasive inspection which can be employed for manufacturing process control. We hereby apply terahertz (THz) time-domain spectroscopy as non-destructive technique to monitor pure and degraded oils as well as hydrocarbon chemicals. Significant differences in the spectra of refractive index (RI) and absorption coefficient arising from the presence of ester linkages in the edible and technical oils were obtained. Explicit increase from 1.38 to 1.5 of the RI in all THz spectrum range was observed in hydrocarbons and mono-functional esters with the increase of molar mass. This fact is in contrast of RI dependence on molar mass in multi-functional esters, such as Adipate or vegetable oils, where it is around 1.54. Degradation products, Oleic Acid (OA) and water in particular, lead only to some changes in absorption coefficient and RI spectra of vegetable oils. We demonstrate that complex colloidal and supramolecular processes, such as dynamics of inverse micelles and oil hydrolysis, take part during oil degradation and are responsible for non-uniform dependence of optical properties on extent of degradation.
Terahertz (THz) Applications in Food and Agriculture: A Review
Transactions of the ASABE, 2013
Terahertz (THz) rays interact with materials at intermolecular levels, and because of this they are the focus of many active research areas. The developments in THz technology were hindered by lack of hardware, but the advent of the femtosecond laser in the 1980s started the advancement in THz generation and detection technologies. THz technology is transitioning from laboratory scale to many practical applications, including security screening, pharmaceuticals, plastics, and others, but there are few studies pertaining to food and agricultural applications. This study reviews the articles related to food and agriculture applications of THz spectroscopy and THz imaging. It also briefly introduces important THz techniques. The survey of the literature reveals great potential for this emerging and promising technology in agriculture. Food inspection, crop inspection, and material characterization could be potential research areas.
State-of-the-Art in Terahertz Sensing for Food and Water Security – A Comprehensive Review
Trends in Food Science & Technology
Past few years have witness a dramatic change in the field of terahertz (THz) technology. The recent advancements in the technology for generation, manipulation and detection exploiting THz radiation have brought revolution in the field. Many researchers around the world have been inspired by the potential of invaluable new applications of THz sensing for food and water contamination detection. The microbial pollution in water and food is one the crucial issues with regard to the sanitary state for drinking water and daily consumption of food. To address this risk, the detection of microbial contamination is of utmost importance since the consumption of insanitary or unhygienic food can lead to catastrophic illness. This paper presents a first-time review of the open literature focused on the advances in the THz sensing for microbiological contamination of food and water and state-of-theart network architectures, applications, industrial trends and recent developments. Finally, open challenges and future research directions are presented with in the field.