Low-Power Multiplexer Structures Targeting Efficient QCA Nanotechnology Circuit Designs (original) (raw)

An Efficient and Optimized Multiplexer Design for Quantum-Dot Cellular Automata

Journal of Computational and Theoretical Nanoscience, 2014

Quantum-dot cellular automata (QCA) is currently being investigated as an emerging alternative to conventional silicon MOSFET technology. In this paper, an efficient and optimized 4 to 1 multiplexer design for implementation in QCA is presented. The aim is to maximize the circuit density and also to focus on the layout that is to be minimal in terms of number of cells and delay. The proposed 4 to 1 multiplexer is designed using 5-input majority gate and a 4-input AND/OR gate. For verifying the functionality of the circuit, the proposed layout is simulated using QCADesigner software. The proposed design is compared with the other previous works. The results show that our design has minimal size and cell count, and it is implemented with only four clock phases. Also we have compared the proposed QCA design with conventional CMOS technology. The results confirm that the QCA design is more efficient in terms of area and clock frequency.

Optimized Design of Multiplexor by Quantum-dot Cellular Automata

Quantum-dot Cellular Automata (QCA) has low power consumption and high density and regularity. QCA widely supports the new devices designed for nanotechnology. Application of QCA technology as an alternative method for CMOS technology on nano-scale shows a promising future. This paper presents successful designing, layout and analysis of Multiplexer with a new structure in QCA technique. In this paper we generalize a 2 to 1 multiplexer, which is used as module to implement the 2 n to 1 multiplexer. In this paper, we will present successful simulation of the 2 to 1, 4 to 1 and 8 to 1 multiplexer with QCA Designer. We will design a new multiplexer based on the majority gate with the minimum number of cells and consumed area. Being potentially pipeline, the QCA technology calculates with the maximum operating speed. We may use these multiplexers in the FPGA and ALU.

A Novel Optimized Multiplexer Design in Quantum-Dot Cellular Automata

International Journal for Research in Applied Science and Engineering Technology, 2017

Molecular quantum-dot cellular automata (QCA) is an emerging nanocomputing paradigm, which operates on electrostatic repulsion phenomena between two electrons to keep those apart at the maximum distance to a rest position for obtaining the highest finding probability. In the field of Quantum-dot Cellular Automata the digital logic gate approaches nearly about to nanometer in scale. In QCA quantum gates operate by the tunneling effect of electrons from one quantum dot to another dot through revealing its wave nature. The operating speed of the device gains the speed of light because the quantum tunneling occurs at the light speed. This paper compares two methodologies of quantum logic gate designing, those are universal T gate designing and conventional gate designing practice. One 22 cells 2x1 MUX is proposed which is designed by conventional method, that provides 20.35% optimization in area occupancy compared to the best reported designs. Furthermore, one 11 cells 2:1 MUX layout is proposed which achieves 33.33% area reduction compared to the best ever multiplexer designed in QCA technology.

Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis

The Journal of Supercomputing, 2021

In this manuscript, we first suggest a single-layer 2:1 QCA MUX with an ultralow number of cells and high speed. Unlike existing designs, the output of the proposed design does not comply with the Boolean regulation and is produced using the essential characteristics of quantum technology. Single-layer 4:1 and 8:1 QCA multiplexers have also been implemented. Moreover, using the proposed 2:1 QCA MUX, a novel and efficient QCA RAM memory cell with the set and reset abilities has been proposed. Forasmuch as the most significant challenge in quantum-dot cellular automata circuit design is the number of cell counts and occupied area. The proposed 2:1 QCA MUX includes 10 cells and an occupied area of 0.03. The unique advantage of the proposed design over all previous output generation tasks is based on cellular interactions. Our findings showed that the proposed 2:1 QCA MUX has a 16.66% and 60% improvement in terms of cell count and occupied area, respectively. In order to confirm the function of the proposed design, some physical proofs are presented. The software for implement of the circuits and their power analysis are QCADesigner 2.0.3 and QCAPro, respectively. The results of the comparisons indicate that the proposed structures are more efficient than the existing ones. The QCAPro power analysis tool has been used for analyzing the power consumption of the proposed designs.

A novel architecture for quantum-dot cellular automata multiplexer

Quantum-dot Cellular Automata (QCA) technology is attractive due to its low power consumption, fast speed and small dimension; therefore it is a promising alternative to CMOS technology. Additionally, multiplexer is a useful part in many important circuits. In this paper we propose a novel design of 2:1 MUX in QCA. Moreover, a 4:1 multiplexer, an XOR gate and a latch are proposed based on our 2:1 multiplexer design. The simulation results have been verified using the QCADesigner.

Modular Design of 2 n :1 Quantum Dot Cellular Automata Multiplexers and its Application, via Clock Zone based Crossover

International Journal of Modern Education and Computer Science, 2016

Quantum-Dot Cellular Automata (QCA) is a radical technology, which works at Nanoscale. Due to its numerous advantages over the conventional CMOS-based digital circuits, researchers are now concentrating more on designing digital circuits using this technology. Researchers have reported various findings in this field till now. In this paper, a modular 2:1 Multiplexer has been designed followed by its application in the designing of 1-bit parallel memory. A 4:1 MUX is designed using cascading of two 2:1 multiplexers. This paper also incorporates a comparative analysis of the proposed circuits with some previous designs. This comparison indicates that the designed Multiplexer is showing a considerable reduction in cell count as well as in the area. Here the design and simulation of the circuits are done using QCA Designer Ver. 1.40. Power dissipation simulation analysis of the designed 4:1 multiplexer is also done using QCA Pro tool.

An ultra-low complexity of 2:1 multiplexer block in QCA technology

Indonesian Journal of Electrical Engineering and Computer Science, 2021

The limitations related to CMOS such as power consumption and parasitic capacitance lead scientists to search for new technologies. Quantum-dot cellular automata (QCA) is a CMOS alternative technology that uses charges instead of voltage level for binary representation. In QCA, many metrics are used for circuit differentiation such as delay, complexity and area. In this work, a new simple block of 2:1 QCA-Multiplexer is proposed. The proposed block is more efficient than previous designs by 0.43%, 0.53%, 50% and 0.72 in terms of area, complexity, delay and cost. QCADesigner software is used to design and verify the proposed circuit.

Efficient QCA Exclusive-or and Multiplexer Circuits Based on a Nanoelectronic-Compatible Designing Approach

Quantum-dot cellular automata (QCA) are a transistorless computation approach which encodes binary information via configuration of charges among quantum dots. The fundamental QCA logic primitives are majority and inverter gates which can be utilized to design various QCA circuits. This study presents a novel approach to designing efficient QCA-based circuits based on Boolean expressions achieved from reconfiguration of five-input and three-input majority gates. Whereas the multiplexer and Exclusive-or are the most important fundamental logical circuits in digital systems, designing efficient and single layer structures without coplanar cross-over wiring is advantageous in QCA technology. In order to demonstrate the efficiency and usefulness of the proposed approach, simple and dense multiplexer and Exclusive-or structures are implemented. The proposed designs have significant improvement in terms of area, complexity, latency, and gate count in comparison to previous designs. The correct logical functionalities of presented structures have been authenticated using QCA designer tool.

An Optimized Design of Complex Multiply-Accumulate (MAC) Unit in Quantum Dot Cellular Automata (QCA)

Silicon Photonics & High Performance Computing, 2017

Multiply-accumulate (MAC) unit finds the large number of applications including computers and processors. In this chapter, we are implementing the optimized design of MAC unit using emerging nanotechnology called Quantum dot Cellular Automata (QCA). The multiplexer is the key unit in the design of MAC and we have achieved 34.78% reduction in total area in the design of multiplexer using QCA. As QCA has advantages such as reduced area and cell count, simulation time, less complexity with low power consumption, quality output with high efficiency is achieved.