Chaotic Mean Field Dynamics of a Boolean Network with Random Connectivity (original) (raw)
Related papers
Dynamics of unperturbed and noisy generalized Boolean networks
Journal of Theoretical Biology, 2009
For years, we have been building models of gene regulatory networks, where recent advances in molecular biology shed some light on new structural and dynamical properties of such highly complex systems. In this work, we propose a novel timing of updates in Random and Scale-Free Boolean Networks, inspired by recent findings in molecular biology. This update sequence is neither fully synchronous nor asynchronous, but rather takes into account the sequence in which genes affect each other. We have used both Kauffman's original model and Aldana's extension, which takes into account the structural properties about known parts of actual GRNs, where the degree distribution is right-skewed and long-tailed. The computer simulations of the dynamics of the new model compare favorably to the original ones and show biologically plausible results both in terms of attractors number and length. We have complemented this study with a complete analysis of our systems' stability under transient perturbations, which is one of biological networks defining attribute. Results are encouraging, as our model shows comparable and usually even better behavior than preceding ones without loosing Boolean networks attractive simplicity.
Entropy, 2022
Random Boolean Networks (RBNs for short) are strongly simplified models of gene regulatory networks (GRNs), which have also been widely studied as abstract models of complex systems and have been used to simulate different phenomena. We define the “common sea” (CS) as the set of nodes that take the same value in all the attractors of a given network realization, and the “specific part” (SP) as the set of all the other nodes, and we study their properties in different ensembles, generated with different parameter values. Both the CS and of the SP can be composed of one or more weakly connected components, which are emergent intermediate-level structures. We show that the study of these sets provides very important information about the behavior of the model. The distribution of distances between attractors is also examined. Moreover, we show how the notion of a “common sea” of genes can be used to analyze data from single-cell experiments.
Higher order Boolean networks as models of cell state dynamics
Journal of Theoretical Biology, 2010
The regulation of the cell state is a complex process involving several components. These complex dynamics can be modeled using Boolean networks, allowing us to explain the existence of different cell states and the transition between them. Boolean models have been introduced both as specific examples and as ensemble or distribution network models. However, current ensemble Boolean network models do not make a systematic distinction between different cell components such as epigenetic factors, gene and transcription factors. Consequently, we still do not understand their relative contributions in controlling the cell fate. In this work we introduce and study higher order Boolean networks, which feature an explicit distinction between the different cell components and the types of interactions between them. We show that the stability of the cell state dynamics can be determined solving the eigenvalue problem of a matrix representing the regulatory interactions and their strengths. The qualitative analysis of this problem indicates that, in addition to the classification into stable and chaotic regimes, the cell state can be simple or complex depending on whether it can be deduced from the independent study of its components or not. Finally, we illustrate how the model can be expanded considering higher levels and higher order dynamics.
Dynamical regimes in non-ergodic random Boolean networks
Random boolean networks are a model of genetic regulatory networks that has proven able to describe experimental data in biology. They not only reproduce important phenomena in cell dynamics, but they are also extremely interesting from a theoretical viewpoint, since it is possible to tune their asymptotic behaviour from order to disorder. The usual approach characterizes network families as a whole, either by means of static or dynamic measures. We show here that a more detailed study, based on the properties of system's attractors, can provide information that makes it possible to predict with higher precision important properties, such as system's response to gene knock-out. A new set of principled measures is introduced, that explains some puzzling behaviours of these networks. These results are not limited to random Boolean network models, but they are general and hold for any discrete model exhibiting similar dynamical characteristics.
Mean-field model of genetic regulatory networks
New Journal of Physics, 2006
In this paper, we propose a mean-field model which attempts to bridge the gap between random Boolean networks and more realistic stochastic modeling of genetic regulatory networks. The main idea of the model is to replace all regulatory interactions to any one gene with an average or effective interaction, which takes into account the repression and activation mechanisms. We find that depending on the set of regulatory parameters, the model exhibits rich nonlinear dynamics. The model also provides quantitative support to the earlier qualitative results obtained for random Boolean networks.
Determining Relative Dynamic Stability of Cell States Using Boolean Network Model
Scientific Reports, 2018
Cell state transition is at the core of biological processes in metazoan, which includes cell differentiation, epithelial-to-mesenchymal transition (EMT) and cell reprogramming. In these cases, it is important to understand the molecular mechanism of cellular stability and how the transitions happen between different cell states, which is controlled by a gene regulatory network (GRN) hard-wired in the genome. Here we use Boolean modeling of GRN to study the cell state transition of EMT and systematically compare four available methods to calculate the cellular stability of three cell states in EMT in both normal and genetically mutated cases. The results produced from four methods generally agree but do not totally agree with each other. We show that distribution of one-degree neighborhood of cell states, which are the nearest states by Hamming distance, causes the difference among the methods. From that, we propose a new method based on one-degree neighborhood, which is the simples...
Analysis of attractor distances in Random Boolean Networks
Computing Research Repository, 2010
We study the properties of the distance between attractors in Random Boolean Networks, a prominent model of genetic regulatory networks. We define three distance measures, upon which attractor distance matrices are constructed and their main statistic parameters are computed. The experimental analysis shows that ordered networks have a very clustered set of attractors, while chaotic networks' attractors are scattered; critical networks show, instead, a pattern with characteristics of both ordered and chaotic networks.
Chaotic Dynamics in an Electronic Model of a Genetic Network
Journal of Statistical Physics, 2005
We consider dynamics in a class of piecewise-linear ordinary differential equations and in an electronic circuit that model genetic networks. In these models, gene activity varies continuously in time. However, as in Boolean or discrete-time switching networks, gene activity is driven high or low based only on whether the activities of the regulating genes are high or low (i.e., above or below certain thresholds). Depending on the "regulatory logic", these models can exhibit simple dynamics, like stable fixed points or oscillation, or chaotic dynamics. The observed qualitative and quantitative differences between the dynamics in the idealized equations and the dynamics in the electronic circuit lead us to focus attention on the analysis of the dynamics as a function of parameter values. We propose new techniques for solving the inverse problem-the problem of inferring the regulatory logic and parameters from time series data. We also give new symbolic and statistical methods for characterizing dynamics in these networks.
On the dynamics of random Boolean networks subject to noise: Attractors, ergodic sets and cell types
Journal of Theoretical Biology, 2010
The asymptotic dynamics of random Boolean networks subject to random fluctuations is investigated. Under the influence of noise, the system can escape from the attractors of the deterministic model, and a thorough study of these transitions is presented. We show that the dynamics is more properly described by sets of attractors rather than single ones. We generalize here a previous notion of ergodic sets, and we show that the Threshold Ergodic Sets so defined are robust with respect to noise and, at the same time, that they do not suffer from a major drawback of ergodic sets. The system jumps from one attractor to another of the same Threshold Ergodic Set under the influence of noise, never leaving it. By interpreting random Boolean networks as models of genetic regulatory networks, we also propose to associate cell types to Threshold Ergodic Sets rather than to deterministic attractors or to ergodic sets, as it had been previously suggested. We also propose to associate cell differentiation to the process whereby a Threshold Ergodic Set composed by several attractors gives rise to another one composed by a smaller number of attractors. We show that this approach accounts for several interesting experimental facts about cell differentiation, including the possibility to obtain an induced pluripotent stem cell from a fully differentiated one by overexpressing some of its genes.
Boolean network models of cellular regulation: prospects and limitations
Journal of The Royal Society Interface, 2008
Computer models are valuable tools towards an understanding of the cell's biochemical regulatory machinery. Possible levels of description of such models range from modelling the underlying biochemical details to top-down approaches, using tools from the theory of complex networks. The latter, coarse-grained approach is taken where regulatory circuits are classified in graph-theoretical terms, with the elements of the regulatory networks being reduced to simply nodes and links, in order to obtain architectural information about the network. Further, considering dynamics on networks at such an abstract level seems rather unlikely to match dynamical regulatory activity of biological cells. Therefore, it came as a surprise when recently examples of discrete dynamical network models based on very simplistic dynamical elements emerged which in fact do match sequences of regulatory patterns of their biological counterparts. Here I will review such discrete dynamical network models, or...