The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation (Genes & Development (2010) 24, (277-289)) (original) (raw)

The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation

Genes & Development, 2010

One of the complexes formed by the hematopoietic transcription factor Gata1 is a complex with the Ldb1 (LIM domain-binding protein 1) and Tal1 proteins. It is known to be important for the development and differentiation of the erythroid cell lineage and is thought to be implicated in long-range interactions. Here, the dynamics of the composition of the complex-in particular, the binding of the negative regulators Eto2 and Mtgr1-are studied, in the context of their genome-wide targets. This shows that the complex acts almost exclusively as an activator, binding a very specific combination of sequences, with a positioning relative to transcription start site, depending on the type of the core promoter. The activation is accompanied by a net decrease in the relative binding of Eto2 and Mtgr1. A Chromosome Conformation Capture sequencing (3C-seq) assay also shows that the binding of the Ldb1 complex marks genomic interaction sites in vivo. This establishes the Ldb1 complex as a positive regulator of the final steps of erythroid differentiation that acts through the shedding of negative regulators and the active interaction between regulatory sequences.

Identification of a TAL1 Target Gene Reveals a Positive Role for the LIM Domain-Binding Protein Ldb1 in Erythroid Gene Expression and Differentiation

Molecular and Cellular Biology, 2003

The TAL1 (or SCL ) gene, originally identified from its involvement by a recurrent chromosomal translocation, encodes a basic helix-loop-helix transcription factor essential for erythropoiesis. Although presumed to regulate transcription, its target genes are largely unknown. We show here that a nuclear complex containing TAL1, its DNA-binding partner E47, zinc finger transcription factor GATA-1, LIM domain protein LMO2, and LIM domain-binding protein Ldb1 transactivates the protein 4.2 (P4.2) gene through two E box GATA elements in its proximal promoter. Binding of this complex to DNA was dependent on the integrity of both E box and GATA sites and was demonstrated to occur on the P4.2 promoter in cells. Maximal transcription in transiently transfected cells required both E box GATA elements and expression of all five components of the complex. This complex was shown, in addition, to be capable of linking in solution double-stranded oligonucleotides corresponding to the two P4.2 E b...

Novel binding partners of Ldb1 are required for haematopoietic development

Blood Cells, Molecules, and Diseases, 2007

Ldb1, a ubiquitously expressed LIM domain binding protein, is essential in a number of tissues during development. It interacts with Gata1, Tal1, E2A and Lmo2 to form a transcription factor complex regulating late erythroid genes. We identify a number of novel Ldb1 interacting proteins in erythroleukaemic cells, in particular the repressor protein Eto-2 (and its family member Mtgr1), the cyclin-dependent kinase Cdk9, and the bridging factor Lmo4. MO-mediated knockdowns in zebrafish show these factors to be essential for definitive haematopoiesis. In accordance with the zebrafish results these factors are coexpressed in prehaematopoietic cells of the early mouse embryo, although we originally identified the complex in late erythroid cells. Based on the change in subcellullar localisation of Eto-2 we postulate that it plays a central role in the transition from the migration and expansion phase of the prehaematopoietic cells to the establishment of definitive haematopoietic stem cells.

Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells

Nature Immunology, 2010

The nuclear adaptor Ldb1 functions as a core component of multiprotein transcription complexes that regulate differentiation in diverse cell types. In the hematopoietic lineage, Ldb1 forms a complex with the non-DNA-binding adaptor Lmo2 and the transcription factors E2A, Scl and GATA-1 (or GATA-2). Here we demonstrate a critical and continuous requirement for Ldb1 in the maintenance of both fetal and adult mouse hematopoietic stem cells (HSCs). Deletion of Ldb1 in hematopoietic progenitors resulted in the downregulation of many transcripts required for HSC maintenance. Genome-wide profiling by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) identified Ldb1 complex-binding sites at highly conserved regions in the promoters of genes involved in HSC maintenance. Our results identify a central role for Ldb1 in regulating the transcriptional program responsible for the maintenance of HSCs.

Promoter 1 ofLMO2, a master gene for hematopoiesis, is regulated by the erythroid specific transcription factor GATA1

Gene Function & Disease, 2000

Promoter 1 of LMO2, a master gene for hematopoiesis, is regulated by the erythroid specific transcription factor GATA1 The T cell oncogene LMO2 was first identified at the site of the translocation t(11;14)(p13;q11) in T-acute lymphocytic leukemia (T-ALL) and encodes a cysteine-rich protein with LIM-motifs. It was later shown to have an essential role in yolk sac and adult erythropoiesis. LMO2 encodes two alternative transcripts differing in the length of the 5' untranslated region, but encoding the same protein. Transcription start site mapping revealed the 5Ј-end of the longer transcript, LMO2a and promoter 1. Sequencing identified two putative GATA1 sites and an overlapping SP1 site close to the transcription start site, suggesting that promoter 1 (P1) is an erythroid specific promoter. Using EMSA analysis with an oligonucleotide from promoter 1 we now show that GATA1 and SP1 bind to these sites. DNaseI hypersensitive site (DHS) mapping upstream of the transcription start site revealed four erythroid specific sites, corresponding to putative GATA1 motifs and one non-lineage specific site. Reporter gene experiments with P1 and a mutant, where both GATA sites were inactivated, showed that GATA1 plays a functional role in the erythroid specific transcriptional control of LMO2 from P1. These studies confirm that promoter 1 of the LMO2 gene is an erythroid specific promoter.

Transcriptional regulatory network analysis of developing human erythroid progenitors reveals patterns of coregulation and potential transcriptional regulators

Physiological Genomics, 2006

Surrey S. Transcriptional regulatory network analysis of developing human erythroid progenitors reveals patterns of coregulation and potential transcriptional regulators. Deciphering the molecular basis for human erythropoiesis should yield information benefiting studies of the hemoglobinopathies and other erythroid disorders. We used an in vitro erythroid differentiation system to study the developing red blood cell transcriptome derived from adult CD34ϩ hematopoietic progenitor cells. mRNA expression profiling was used to characterize developing erythroid cells at six time points during differentiation (days 1, 3, 5, 7, 9, and 11). Eleven thousand seven hundred sixty-three genes (20,963 Affymetrix probe sets) were expressed on day 1, and 1,504 genes, represented by 1,953 probe sets, were differentially expressed (DE) with 537 upregulated and 969 downregulated. A subset of the DE genes was validated using realtime RT-PCR. The DE probe sets were subjected to a cluster metric and could be divided into two, three, four, five, or six clusters of genes with different expression patterns in each cluster. Genes in these clusters were examined for shared transcription factor binding sites (TFBS) in their promoters by comparing enrichment of each TFBS relative to a reference set using transcriptional regulatory network analysis. The sets of TFBS enriched in genes up-and downregulated during erythropoiesis were distinct. This analysis identified transcriptional regulators critical to erythroid development, factors recently found to play a role, as well as a new list of potential candidates, including Evi-1, a potential silencer of genes upregulated during erythropoiesis. Thus this transcriptional regulatory network analysis has yielded a focused set of factors and their target genes whose role in differentiation of the hematopoietic stem cell into distinct blood cell lineages can be elucidated. erythropoiesis; hematopoietic progenitor; transcriptional regulation;

Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development

The EMBO Journal, 2012

The key haematopoietic regulator Myb is essential for coordinating proliferation and differentiation. ChIP-Sequencing and Chromosome Conformation Capture (3C)-Sequencing were used to characterize the structural and protein-binding dynamics of the Myb locus during erythroid differentiation. In proliferating cells expressing Myb, enhancers within the Myb-Hbs1l intergenic region were shown to form an active chromatin hub (ACH) containing the Myb promoter and first intron. This first intron was found to harbour the transition site from transcription initiation to elongation, which takes place around a conserved CTCF site. Upon erythroid differentiation, Myb expression is downregulated and the ACH destabilized. We propose a model for Myb activation by distal enhancers dynamically bound by KLF1 and the GATA1/TAL1/LDB1 complex, which primarily function as a transcription elongation element through chromatin looping.

Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins

Genes & Development, 2007

The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and β-globin expression in erythroid progenitors. Final...

Integration of Elf-4 into Stem/Progenitor and Erythroid Regulatory Networks through Locus-Wide Chromatin Studies Coupled with In Vivo Functional Validation

Molecular and Cellular Biology, 2012

The ETS transcription factor Elf-4 is an important regulator of hematopoietic stem cell (HSC) and T cell homeostasis. To gain insights into the transcriptional circuitry within which Elf-4 operates, we used comparative sequence analysis coupled with chromatin immunoprecipitation (ChIP) with microarray technology (ChIP-chip) assays for specific chromatin marks to identify three promoters and two enhancers active in hematopoietic and endothelial cell lines. Comprehensive functional validation of each of these regulatory regions in transgenic mouse embryos identified a tissue-specific enhancer (؊10E) that displayed activity in fetal liver, dorsal aorta, vitelline vessels, yolk sac, and heart. Integration of a ChIP-sequencing (ChIP-Seq) data set for 10 key stem cell transcription factors showed Pu.1, Fli-1, and Erg were bound to the ؊10E element, and mutation of three highly conserved ETS sites within the enhancer abolished its activity. Finally, the transcriptional repressor Gfi1b was found to bind to and repress one of the Elf-4 promoters (؊30P), and we show that this repression of Elf-4 is important for the maturation of primary fetal liver erythroid cells. Taken together, our results provide a comprehensive overview of the transcriptional control of Elf-4 within the hematopoietic system and, thus, integrate Elf-4 into the wider transcriptional regulatory networks that govern hematopoietic development.

Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression

Genome Research, 2009

The transcription factor GATA1 regulates an extensive program of gene activation and repression during erythroid development. However, the associated mechanisms, including the contributions of distal versus proximal cis-regulatory modules, co-occupancy with other transcription factors, and the effects of histone modifications, are poorly understood. We studied these problems genome-wide in a Gata1 knockout erythroblast cell line that undergoes GATA1-dependent terminal maturation, identifying 2616 GATA1-responsive genes and 15,360 GATA1-occupied DNA segments after restoration of GATA1. Virtually all occupied DNA segments have high levels of H3K4 monomethylation and low levels of H3K27me3 around the canonical GATA binding motif, regardless of whether the nearby gene is induced or repressed. Induced genes tend to be bound by GATA1 close to the transcription start site (most frequently in the first intron), have multiple GATA1-occupied segments that are also bound by TAL1, and show evolutionary constraint on the GATA1binding site motif. In contrast, repressed genes are further away from GATA1-occupied segments, and a subset shows reduced TAL1 occupancy and increased H3K27me3 at the transcription start site. Our data expand the repertoire of GATA1 action in erythropoiesis by defining a new cohort of target genes and determining the spatial distribution of cisregulatory modules throughout the genome. In addition, we begin to establish functional criteria and mechanisms that distinguish GATA1 activation from repression at specific target genes. More broadly, these studies illustrate how a ''master regulator'' transcription factor coordinates tissue differentiation through a panoply of DNA and protein interactions.