Predation on lizard eggs by ants: species interactions in a variable physical environment (original) (raw)
Related papers
Resources exploitation by ants facilitates lizard egg survival
Ecological Entomology, 2008
1. This study investigated the interaction between eggs of the lizard Mabuya longicaudata Hallowell and two species of ant: a lizard egg commensalist (Paratrechina longicornis Latreille), and an egg predator (Pheidole taivanensis Forel). The ecological interaction between P. longicornis and lizard eggs was tested, and it was predicted that when the interaction was removed, lizard eggs would be attacked by P. taivanensis. 2. Field observations showed that both ant species actively searched for lizard eggs, and that P. taivanensis typically found new lizard nests earlier than P. longicornis did. Left undisturbed, P. taivanensis predation dramatically reduced lizard egg survival. While P. longicornis usually found nests later, they were able to displace P. taivanensis. As a result, proportional egg survival was higher in nests with P. longicornis (0.95 ± 0.04 eggs) compared to nests without either ant species (0.65 ± 0.09 eggs), or nests occupied by P. taivanensis (0.07 ± 0.02 eggs). 3. When P. longicornis ants were experimentally excluded from lizard nests, the proportion of eggs surviving significantly decreased because of increased P. taivanensis predation. Paratrechina longicornis benefits from water that condenses on the eggs. When this resource disappears P. longicornis abandons the nest, leading to predation of the eggs by P. taivanensis .
Climate, competition, and the coexistence of island lizards
Functional Ecology, 2006
1. The influence of environmental temperatures and competition combine to determine the distributions of island lizards. Neither a bioenergetic model nor simple models of competition alone can account for the distributions. A mechanistic, bioenergetic model successfully predicts how the abundance of a solitary Anolis lizard species will decline along an island's elevation gradient. However, the abundance trends for sympatric lizards diverge from the predictions of the non-interactive model.
Numerical response of lizards to aquatic insects and short-term consequences for terrestrial prey
2002
Spatial subsidies, or inputs of resources from more productive donor habitats, can cause numerical responses in consumer populations via behavioral and demographic mechanisms. In addition, subsidies may have indirect effects on the in situ prey of these consumers. These indirect effects can be either negative (e.g., apparent competition) or positive (e.g., via diet shifts) depending on the relative strength of the predator's functional and numerical responses to prey subsidies. Here we report a numerical response by a lizard (Western fence lizard, Sceloporus occidentalis) to experimental reductions in the flux of river-derived insects. Initially, equal densities of lizards declined significantly faster in plots in which aquatic insect abundance was reduced by nearly 50% (season average) relative to controls. Abundance and biomass of terrestrial arthropods declined significantly between the start and end of the experiment across treatments. Despite consistently lower lizard abundance in plots with reduced subsidy levels, however, relative declines in the abundance and biomass of in situ terrestrial arthropods (all taxa combined) were not significantly different between reduced-and ambient-subsidy plots. Relative declines in spider biomass differed significantly between treatments and were higher in reduced-subsidy than ambientsubsidy plots, but only over one of three 3-wk sampling intervals. Thus, over the biologically active summer season, aquatic subsidies exerted brief positive or no significant indirect effects on the in situ prey of riparian lizards. These results suggest that, although aquatic insect prey may determine the spatial distribution and local abundance of riparian predators, the effects of increased predator density on in situ prey may be offset by higher per capita predation by these consumers on in situ prey in subsidy-poor relative to subsidy-rich habitats.
The ecology of lizard reproductive output
Global Ecology and Biogeography, 2012
Aim We provide a new quantitative analysis of lizard reproductive ecology. Comparative studies of lizard reproduction to date have usually considered life-history components separately. Instead, we examine the rate of production (productivity hereafter) calculated as the total mass of offspring produced in a year. We test whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environmental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location Worldwide. Methods We assembled a database containing 551 lizard species, their phylogenetic relationships and multiple life history and ecological variables from the literature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product-productivityis well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size. Island species were less productive than continental species. Mass-specific productivity was positively correlated with environmental temperature, but not with body temperature. Viviparous lizards were less productive than egg-laying species. Diet and primary productivity were not associated with productivity in any model. Other effects, including lower productivity of fossorial, nocturnal and active foraging species were confounded with phylogeny. Productivity was not lower in species at risk of extinction. Main conclusions Our analyses show the value of focusing on the rate of annual biomass production (productivity), and generally supported associations between productivity and environmental temperature, factors that affect mortality and the number of broods a lizard can produce in a year, but not with measures of body temperature, environmental productivity or diet.
Oecologia, 1981
There is evidence that the side-blotched lizard, Uta stansburiana, and some other organisms of temperate latitudes produce fewer and larger eggs as the reproductive season progresses. There are at least two models that could explain this phenomenon. Proponents of the parental investment model claim that females are selected to increase egg size, at the cost of clutch size, late in the season in order to produce larger and competitively superior hatchlings at a time when food for hatchlings is in low supply and when juvenile density is high. In this model the selective agent is relative scarcity of food available to hatchlings late in the reproductive season, and the adaptive response is production of larger offspring. The alternative explanation (bet-hedging model) proposed in this paper is based on the view that the amount of food available to females for the production of late-season clutches is unpredictable, and that selection has favored conservatively small clutches in the late season to insure that each egg is at least minimally provisioned. Smaller clutches, which occur most frequently late in the season, are more likely to consist of larger eggs, compared to larger clutches, for two reasons. Firstly, unlike birds, oviparous lizards cannot alter parental investment after their eggs are deposited, and therefore, in cases of fractional optimal clutch size, the next lower integral clutch size is selected with the remaining reproductive energy allocated to increased egg size. With other factors constant, eggs of smaller clutches will increase more in size than eggs of larger clutches when excess energy is divided among the eggs of a clutch. Secondly, unanticipated energy that may become available for reproduction during energy-rich years will similarly increase egg size a greater amount if divided among fewer eggs,
Reproductive Investment of a Lacertid Lizard in Fragmented Habitat
Conservation Biology, 2005
We studied the effect of habitat fragmentation on female reproductive investment in a widespread lacertid lizard (Psammodromus algirus) in a mixed-forest archipelago of deciduous and evergreen oak woods in northern Spain. We captured gravid females in fragments (≤10 ha) and forests (≥ 200 ha) and brought them to the laboratory, where they laid their eggs. We incubated the eggs and released the first cohort of juveniles into the wild to monitor their survival. Females from fragments produced a smaller clutch mass and laid fewer eggs (relative to mean egg mass) than females of similar body size from forests. Lizards did not trade larger clutches for larger offspring, however, because females from fragments did not lay larger eggs (relative to their number) than females from forests. Among the first cohort of juveniles, larger egg mass and body size increased the probability of recapture the next year. Thus, fragmentation decreased the relative fecundity of lizards without increasing the quality of their offspring. Reduced energy availability, increased predation risk, and demographic stochasticity could decrease the fitness of lizards in fragmented habitats, which could contribute to the regional scarcity of this species in agricultural areas sprinkled with small patches of otherwise suitable forest. Our results show that predictable reduction of reproductive output with decreasing size of habitat patches can be added to the already known processes that cause inverse density dependence at low population numbers.
Reproductive performance of a lacertid lizard at the core and the periphery of the species’ range
Biological Journal of the Linnean Society, 2007
The range boundaries of organisms are frequently interpreted in terms of a decline in the extent to which the life histories of outer populations are able to adapt to local environmental conditions. To test this hypothesis, we compared the reproductive characteristics of two Iberian populations of the lizard Psammodromus algirus (Linnaeus, 1758). One of them (Lerma) is close to the northern edge of the species' range, whereas the other one (El Pardo) occupies a typical core habitat 200 km further south. Gravid females were captured in the field and transported to the lab for egg laying. Second clutches were less frequent at Lerma (where clutch size and clutch mass were larger for first than for second clutches) than at El Pardo. The total mass of both clutches combined was similar at both sites. Thus, the higher frequency of second clutches at El Pardo appeared to balance the between-sites difference in energy allocation to the first clutch. Females from Lerma laid more but smaller eggs than those from El Pardo. When incubated at the same temperature, eggs from Lerma hatched sooner even when controlling for between-sites differences in mean egg size. These differences are interpreted in the light of the advantages of early hatching and high fecundity in the northern population, as opposed to large offspring size in the core population. We conclude that the life-history traits studied show enough variation, presumably of an adaptive nature, to cope with environmental challenges at the edge of the species' range. , 92 , 87-96.