Inverse Spectral and Inverse Nodal Problems for Energy-Dependent Sturm-Liouville Equations with Δ-Interaction (original) (raw)

Abstract

In this article, we study the inverse spectral and inverse nodal problems for energy-dependent Sturm-Liouville equations with δ-interaction. We obtain uniqueness, reconstruction and stability using the nodal set of eigenfunctions for the given problem.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (32)

  1. Akhtyamov, A. M.; Sadovnichii, V. A.; Sultanaev, Y. T.; Inverse problem for an operator pencil with nonseparated boundary conditions. Eurasian Mathematical Journal, 1:2 (2010), 5-16.
  2. Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H.; (with an appendix by Exner, P.) Solvable Models in Quantum Mechanics (second edition), AMS Chelsea Publ., (2005).
  3. Amirov, R. K.; On Sturm-Liouville operators with discontinuity conditions inside an interval. Journal of Mathematical Analysis and Applications, 317:1 (2006), 163-176.
  4. Buterin, S. A.; Shieh, C. T.; Incomplete inverse spectral and nodal problems for differential pencils. Results in Mathematics, 62:1-2 (2012), 167-179.
  5. Cheng, Y. H.; Law, C. K.; Tsay, J.; Remarks on a new inverse nodal problem. Journal of Mathematical Analysis and Applications, 248:1 (2000), 145-155.
  6. Coddington, E. A.; Levinson, N.; Theory of Ordinary Differential Equations. McGraw-Hill, New York, (1955).
  7. Freiling, G.; Yurko, V. A.; Inverse Sturm-Liouville Problems and Their Applications. New York, NOVA Science Publishers, (2001).
  8. Freiling, G.; Yurko, V. A.; Inverse spectral problems for singular non-selfadjoint differential operators with discontinuities in an interior point. Inverse Problems, 18 (2002), 757-773.
  9. Guseinov, I. M.; Nabiyev, I. M.; The inverse spectral problem for pencils of differential operators. Math. Sb., 198:11 (2007), 47-66; English transl., Sb. Math., 198:11 (2007), 1579- 1598.
  10. Gasymov, M. G.; Guseinov, G. Sh.; Determination of a diffusion operator from spectral data. Dokl. Akad. Nauk Azerb. SSR, 37:2 (1981), 19-23, (Russian).
  11. Hochstadt, H.; Lieberman, B.; An inverse Sturm-Liouville problem with mixed given data, SIAM Journal on Applied Mathematics, 34:4 (1978), 676-680.
  12. Hald, O. H.; McLaughlin, J. R.; Solutions of inverse nodal problems. Inverse Problems, 5 (1989), 307-347.
  13. Horvath M.; Inverse spectral problems and closed exponential systems. Ann. of Math., 162 (2005), 885-918.
  14. Hryniv, R. O.; Mykytyuk, Ya. V.; Inverse spectral problems for Sturm-Liouville operators with singular potentials. Inverse Problems, 19 (2003), 665-684.
  15. Law, C. K.; Yang, C. F.; Reconstructing the potential function and its derivatives using nodal data. Inverse Problems, 14:2 (1998), 299-312.
  16. Levitan, B, M.; Inverse Sturm-Liouville Problems. Nauka, Moscow (1984), English transl., VNU Science Press, Utrecht, (1987).
  17. Manafov, M. D.; Kablan, A.; Inverse scattering problems for enegy-dependent Sturm-Liouville equations with point delta-interaction and eigenparameter-dependent boundary condition. Electronic Journal of Differential Equations, 237 (2013), 1-9.
  18. Marchenko, V. A.; Maslov, K. V.; Stability of the problem of recovering the Sturm-Liouville operator from the spectral function. Mat. Sb. 81(123):4 (1970), 525-551; English transl., Math. of the USSR Sb. 10:4 (1970), 475-502.
  19. Marchenko, V.A.; Sturm-Liouville Operators and Their Applications, Naukova Dumka, Kiev, (1977), English Transl.: Birkhöuser, (1986).
  20. McLaughlin, J. R.; Inverse spectral theory using nodal points as data -a uniqueness result. Journal of Differential Equations, 73:2 (1988), 354-362.
  21. McLaughlin, J. R.; Stability theorems for two inverse spectral problems. Inverse Problems, 4(1988), 529-540.
  22. Mochizuki, K., Trooshin, I.; Inverse problem for interior spectral data of the Sturm-Liouville operator. Journal of Inverse and Ill-Posed Problems, 9:4 (2001), 425-433.
  23. Mochizuki, K., Trooshin, I.; Inverse problem for interior spectral data of the Dirac operator on a finite interval. Publications of the Research Institute for Mathematical Sciences, 38:2 (2002), 387-395.
  24. Poschel, J.; Inverse Spectral Theory, Academic Press., New York, (1987).
  25. Ramm, A. G.; Property C for ODE and applications to inverse problems. Operator Theory and Its Applications, Winnipeg, MB, (1998), Amer. Math. Soc., Fields Institute Communi- cations, 25 (2000), 15-75.
  26. Savchuk, A. M.; A mapping method in inverse Sturm-Liouville problems with singular po- tentials. Proceedings of the Steklov Institute of Mathematics, 261:1 (2008), 237-242.
  27. Shen, C. L.; Chieh, C. T.; An inverse nodal problem for vectorial Sturm-Liouville equation. Inverse Problems, 14 (2000), 349-356.
  28. Shepelsky, D. G.; The inverse problem of reconstruction of the medium's conductivity in a class of discontinuous and increasing functions. Spectral Operator Theory and Related Topics, Adv. Soviet Math., 19, Amer. Math. Soc., Providence, RI (1994), 209-232.
  29. Shieh, C. T.; Yurko, V. A.; Inverse nodal and inverse spectral problems for discontinuous boundary value problems. Journal of Mathematical Analysis and Applications, 347:1 (2008), 266-272.
  30. Yang, C. F.; Inverse nodal problems of discontinuous Sturm-Liouville operator. Journal of Differential Equations, 254:4 (2013), 1992-2014.
  31. Yurko V. A.; Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-Posed Problems Series. VSP, Utrecht, (2002).
  32. Yurko, V. A.; An inverse problem for pencils of differential operators. Mat. Sb., 191:10 (2000), 137-160; English transl., Sb. Math., 191:10 (2000), 1561-1586.