Casein Kinase 1δ-dependent Wee1 Protein Degradation (original) (raw)

Casein Kinase 1 -dependent Wee1 Protein Degradation

Journal of Biological Chemistry, 2014

Background: Wee1 is an essential gene in mammals that encodes the cell cycle and cancer associated protein Wee1 kinase. Results: Inhibition of CK1␦ kinase increases the levels of Wee1 protein kinase. Conclusion: Casein kinase 1␦ is required for Wee1 degradation in HeLa cells and mouse embryonic fibroblasts. Significance: This is a previously unappreciated role for CK1␦ in controlling Wee1 degradation and cell cycle progression.

Activation Domain-dependent Degradation of Somatic Wee1 Kinase

Journal of Biological Chemistry, 2010

Cell cycle progression is dependent upon coordinate regulation of kinase and proteolytic pathways. Inhibitors of cell cycle transitions are degraded to allow progression into the subsequent cell cycle phase. For example, the tyrosine kinase and Cdk1 inhibitor Wee1 is degraded during G 2 and mitosis to allow mitotic progression. Previous studies suggested that the N terminus of Wee1 directs Wee1 destruction. Using a chemical mutagenesis strategy, we report that multiple regions of Wee1 control its destruction. Most notably, we find that the activation domain of the Wee1 kinase is also required for its degradation. Mutations in this domain inhibit Wee1 degradation in somatic cell extracts and in cells without affecting the overall Wee1 structure or kinase activity. More broadly, these findings suggest that kinase activation domains may be previously unappreciated sites of recognition by the ubiquitin proteasome pathway.

Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways

Proceedings of the National Academy of Sciences, 2005

At the onset of M phase, the activity of somatic Wee1 (Wee1A), the inhibitory kinase for cyclin-dependent kinase (CDK), is downregulated primarily through proteasome-dependent degradation after ubiquitination by the E3 ubiquitin ligase SCF ␤-TrCP . The F-box protein ␤-TrCP (␤-transducin repeat-containing protein), the substrate recognition component of the ubiquitin ligase, binds to its substrates through a conserved binding motif (phosphodegron) containing two phosphoserines, DpSGXXpS. Although Wee1A lacks this motif, phosphorylation of serines 53 and 123 (S53 and S123) of Wee1A by polo-like kinase 1 (Plk1) and CDK, respectively, are required for binding to ␤-TrCP. The sequence surrounding phosphorylated S53 (DpSAFQE) is similar to the conserved ␤-TrCPbinding motif; however, the role of S123 phosphorylation (EEG-FGSSpSPVK) in ␤-TrCP binding was not elucidated. In the present study, we show that phosphorylation of S123 (pS123) by CDK promoted the binding of Wee1A to ␤-TrCP through three independent mechanisms. The pS123 not only directly interacted with basic residues in the WD40 repeat domain of ␤-TrCP but also primed phosphorylation by two independent protein kinases, Plk1 and CK2 (formerly casein kinase 2), to create two phosphodegrons on Wee1A. In the case of Plk1, S123 phosphorylation created a polo box domain-binding motif (SpSP) on Wee1A to accelerate phosphorylation of S53 by Plk1. CK2 could phosphorylate S121, but only if S123 was phosphorylated first, thereby generating the second ␤-TrCP-binding site (EEGFGpS121). Using a specific inhibitor of CK2, we showed that the phosphorylation-dependent degradation of Wee1A is important for the proper onset of mitosis.

Redundant Ubiquitin Ligase Activities Regulate Wee1 Degradation and Mitotic Entry

Cell Cycle, 2007

The irreversible nature of mitotic entry is due to the activation of mitosis specific kinases such as cdk1/cyclin B. Cdk1/cyclin B induces activation of mitosis by promoting phosphatases while suppressing inhibitory factors such as the tyrosine kinase wee1. Since wee1 inactivates cdk1/cyclin B during the S and G 2 phases, its activity must be downregulated for mitotic progression to occur. One mechanism of suppressing wee1 activity is ubiquitin-dependent proteolysis. Cdk1/cyclin B1 phosphorylates wee1, targeting it for recognition by ubiquitin ligases and subsequent proteasomal degradation. One of the ubiquitin ligases promoting wee1 destruction during mitosis is the SCF b-trcp complex. We demonstrate that this complex, and a second SCF complex containing the F-box protein Tome-1, regulate wee1 degradation during the S and G 2 phases of the cell cycle. Therefore, redundant ubiquitin ligase activities promote efficient mitotic entry of eukaryotic cells.

Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation

Molecular Biology of the Cell, 2012

The activity of Cdk1-cyclin B1 mitotic complexes is regulated by the balance between the counteracting activities of Wee1/Myt1 kinases and Cdc25 phosphatases. These kinases and phosphatases must be strictly regulated to ensure proper mitotic timing. One masterpiece of this regulatory network is Cdk1, which promotes Cdc25 activity and suppresses inhibitory Wee1/Myt1 kinases through direct phosphorylation. The Cdk1-dependent phosphorylation of Wee1 primes phosphorylation by additional kinases such as Plk1, triggering Wee1 degradation at the onset of mitosis. Here we report that Cdc14A plays an important role in the regulation of Wee1 stability. Depletion of Cdc14A results in a significant reduction in Wee1 protein levels. Cdc14A binds to Wee1 at its amino-terminal domain and reverses CDK-mediated Wee1 phosphorylation. In particular, we found that Cdc14A inhibits Wee1 degradation through the dephosphorylation of Ser-123 and Ser-139 residues. Thus the lack of phosphorylation of these two residues prevents the interaction with Plk1 and the consequent efficient Wee1 degradation at the onset of mitosis. These data support the hypothesis that Cdc14A counteracts Cdk1-cyclin B1 activity through Wee1 dephosphorylation.

Binding of 14-3-3beta to the carboxyl terminus of Wee1 increases Wee1 stability, kinase activity, and G2-M cell population

Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research, 2000

Wee1 protein kinase plays an important regulatory role in cell cycle progression. It inhibits Cdc-2 activity by phosphorylating Tyr15 and arrests cells at G2-M phase. In an attempt to understand Wee1 regulation during cell cycle, yeast two-hybrid screening was used to identify Wee1-binding protein(s). Five of the eight positive clones identified encode 14-3-3beta. In vivo binding assay in 293 cells showed that both full-length and NH2-terminal truncated Wee1 bind with 14-3-3beta. The 14-3-3beta binding site was mapped to a COOH-terminal consensus motif, RSVSLT (codons 639 to 646). Binding with 14-3-3beta increases the protein level of full-length Wee1 but not of the truncated Wee1. Accompanying the protein level increases, the kinase activity of Wee1 also increases when coexpressed with 14-3-3beta. Increased Wee1 protein level/enzymatic activity is accountable, at least in part, to an increased Wee1 protein half-life when coexpressed with 14-3-3beta. The protein half-life of the NH2...

Structural basis of Wee kinases functionality and inactivation by diverse small molecule inhibitors

Journal of medicinal chemistry, 2017

Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2 and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency suggesting complex mechanisms of activation. A series of crystal structures revealed unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a fra...

Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy

Molecular cancer therapeutics, 2013

Inhibition of the DNA damage checkpoint kinase WEE1 potentiates genotoxic chemotherapies by abrogating cell-cycle arrest and proper DNA repair. However, WEE1 is also essential for unperturbed cell division in the absence of extrinsic insult. Here, we investigate the anticancer potential of a WEE1 inhibitor, independent of chemotherapy, and explore a possible cellular context underlying sensitivity to WEE1 inhibition. We show that MK-1775, a potent and selective ATP-competitive inhibitor of WEE1, is cytotoxic across a broad panel of tumor cell lines and induces DNA double-strand breaks. MK-1775-induced DNA damage occurs without added chemotherapy or radiation in S-phase cells and relies on active DNA replication. At tolerated doses, MK-1775 treatment leads to xenograft tumor growth inhibition or regression. To begin addressing potential response markers for MK-1775 monotherapy, we focused on PKMYT1, a kinase functionally related to WEE1. Knockdown of PKMYT1 lowers the EC(50) of MK-17...

An UltraHigh Throughput Cell-Based Screen for Wee1 Degradation Inhibitors

Journal of Biomolecular Screening, 2010

The tyrosine kinase Wee1 is part of a key cellular sensing mechanism that signals completion of DNA replication, ensuring proper timing of entry into mitosis. Wee1 acts as an inhibitor of mitotic entry by phosphorylating cyclin-dependent kinase CDK1. Wee1 activity is mainly regulated at the protein level through its phosphorylation and subsequent degradation by the ubiquitin proteasome pathway. To facilitate identification of small molecules preventing Wee1 degradation, a homogeneous cell-based assay was developed using HeLa cells transiently transfected with a Wee1-Luciferase fusion protein. To insure uHTS compatibility, the assay was scaled to 1,536-well plate format and cells were transfected in bulk and cryopreserved. This miniaturized homogenous assay demonstrated robust performance, with a calculated Z′ factor of 0.65±0.05. The assay was screened against a publicly available library of ~218,000 compounds in order to identify Wee1 stabilizers. Nonselective, cytotoxic and promiscuous compounds were rapidly triaged through the use of a similarly formatted counterscreen that measured stabilization of a N-cyclin B-Luciferase fusion protein, as well as execution of viability assessment in the parental HeLa cell line. This screening campaign led to the discovery of four unrelated cell-permeable small molecules that showed selective Wee1-Luciferase stabilization with micromolar potency. One of these compounds, SID4243143, was shown to inhibit cell cycle progression, underscoring the importance of Wee1 degradation to the cell cycle. Our results suggest that this uHTS approach is suitable for identifying selective chemical probes that prevent Wee1 degradation, and generally applicable to discovering inhibitors of the ubiquitin proteasome pathway.