LpL_pLp regularized portfolio optimization (original) (raw)

Abstract

Investors who optimize their portfolios under any of the coherent risk measures are naturally led to regularized portfolio optimization when they take into account the impact their trades make on the market. We show here that the impact function determines which regularizer is used. We also show that any regularizer based on the norm L p with p > 1 makes the sensitivity of coherent risk measures to estimation error disappear, while regularizers with p < 1 do not. The L 1 norm represents a border case: its "soft" implementation does not remove the instability, but rather shifts its locus, whereas its "hard" implementation (equivalent to a ban on short selling) eliminates it. We demonstrate these effects on the important special case of Expected Shortfall (ES) that is on its way to becoming the next global regulatory market risk measure.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (44)

  1. P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data: Meth- ods, Theory and Applications. Springer Series in Statistics. Springer, Berlin, Heidelberg, 2011.
  2. I. Kondor, S. Pafka, and G. Nagy. Noise sensitivity of portfolio selection under various risk measures. Journal of Banking and Finance, 31:1545-1573, 2007.
  3. S. Ciliberti, I. Kondor, and M. Mezard. On the feasibility of portfolio optimiza- tion under expected shortfall. Quantitative Finance, 7:389-396, 2007.
  4. M. Mézard and A. Montanari. Information, Physics, and Computation. Oxford Graduate Texts. OUP Oxford, 2009.
  5. I. Varga-Haszonits and I. Kondor. Noise Sensitivity of Portfolio Selection in Con- stant Conditional Correlation GARCH models. Physica, A385:307-318, 2007.
  6. R. T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of Risk, 2(3):21-41, 2000.
  7. C. Acerbi, C. Nordio, and C. Sirtori. Expected Shortfall as a Tool for Financial Risk Management, February 2001.
  8. Basel Committee on Banking Supervision. Fundamental review of the trading book, 2012.
  9. Basel Committee on Banking Supervision . Fundamental review of the trading book: A revised market risk framework., 2013.
  10. I. Varga-Haszonits and I. Kondor. The instability of downside risk measures. J. Stat. Mech., P12007, 2008.
  11. I. Kondor and I. Varga-Haszonits. Instability of portfolio optimization under coherent risk measures. Advances in Complex Systems, 13, 2010.
  12. P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent Measures of Risk. Mathematical Finance, 9:203-228, 1999.
  13. E. J. Elton and M. J. Gruber. Modern Portfolio Theory and Investment Analysis. Wiley, New York, 1995.
  14. J.D. Jobson and B. Korkie. Improved Estimation for Markowitz Portfolios Using James-Stein Type Estimators. Proceedings of the American Statistical Associa- tion (Business and Economic Statistics), 1:279-284, 1979.
  15. P. Jorion. Bayes-Stein Estimation for Portfolio Analysis. Journal of Financial and Quantitative Analysis, 21:279-292, 1986.
  16. P.A. Frost and J.E. Savarino. An Empirical Bayes Approach to Efficient Port- folio Selection. Journal of Financial and Quantitative Analysis, 21:293-305, 1986.
  17. R. Macrae and C. Watkins. Safe portfolio optimization. In H. Bacelar-Nicolau, F. C. Nicolau, and J. Janssen, editors, Proceedings of the IX International Sym- posium of AppliedStochastic Models and Data Analysis: Quantitative Methods in Business and Industry Society, ASMDA-99, 14-17 June 1999, Lisbon, Portugal, page 435. INE, Statistics National Institute, Portugal, 1999.
  18. R. Jagannathan and T. Ma. Risk reduction in large portfolios: Why imposing the wrong constraints helps. Journal of Finance, 58:1651-1684, 2003.
  19. O. Ledoit and M. Wolf. Improved Estimation of the Covariance Matrix of Stock Returns with an Application to Portfolio Selection. Journal of Empirical Finance, 10(5):603-621, 2003.
  20. O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal., 88:365-411, 2004.
  21. O. Ledoit and M. Wolf. Honey, I Shrunk the Sample Covariance Matrix. J. Portfolio Management, 31:110, 2004.
  22. V. DeMiguel, L. Garlappi, and R. Uppal. Optimal versus Naive Diversification: How Efficient is the 1/N Portfolio Strategy? Review of Financial Studies, 2007.
  23. L. Garlappi, R. Uppal, and T. Wang. Portfolio selection with parameter and model uncertainty: a multi-prior approach. Review of Financial Studies, 20:41- 81, 2007.
  24. V. Golosnoy and Y. Okhrin. Multivariate shrinkage for optimal portfolio weights. The European Journal of Finance, 13:441-458, 2007.
  25. R. Kan and G. Zhou. Optimal portfolio choice with parameter uncertainty. Journal of Financial and Quantitative Analysis, 42:621-656, 2007.
  26. G. Frahm and Ch. Memmel. Dominating estimators for the global minimum variance portfolio, 2009. Deutsche Bundesbank, Discussion Paper, Series 2: Banking and Financial Studies.
  27. V. DeMiguel, L. Garlappi, F. J. Nogales, and R. Uppal. A generalized ap- proach to portfolio optimization: Improving performance by constraining port- folio norms. Management Science, 55:798-812, 2009.
  28. J. Brodie, I. Daubechies, C. De Mol, D. Giannone, and I. Loris. Sparse and stable markowitz portfolios. Proceedings of the National Academy of Sciences, 106(30):12267-12272, 2009.
  29. L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters. Noise Dressing of Finan- cial Correlation Matrices. Phys. Rev. Lett., 83:1467-1470, 1999.
  30. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley. Universal and Non-Universal Properties of Cross-Correlations in Financial Time Series. Phys. Rev. Lett., 83:1471, 1999.
  31. L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters. Random Matrix Theory and Financial Correlations. International Journal of Theoretical and Applied Finance, 3:391, 2000.
  32. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, and H. E. Stan- ley. Universal and nonuniversal properties of cross correlations in financial time series. Phys. Rev. Lett., 83:1471-1474, Aug 1999.
  33. Z. Burda, A. Goerlich, and A. Jarosz. Signal and noise in correlation matrix. Physica, A343:295, 2004.
  34. M. Potters and J.-Ph. Bouchaud. Financial applications of random matrix the- ory: Old laces and new pieces. Acta Phys. Pol., B36:2767, 2005.
  35. S. Still and I. Kondor. Regularizing portfolio optimization. New Journal of Physics, 12(7):075034, 2010.
  36. B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural Computation, 12(5):1207-1245, 05 2000.
  37. A. Takeda and M. Sugiyama. ν-support vector machine as conditional value-at- risk minimization. In A. McCallum and S. Roweis, editors, Proceedings of the 25th international conference on Machine learning (ICML), volume 307, pages 1056-1063. Omnipress, 2008.
  38. F. Caccioli, S. Still, M. Marsili, and I. Kondor. Optimal liquidation strategies regularize portfolio selection. The European Journal of Finance, 19(6):554-571, 2013.
  39. B. Toth, Y. Lemperiere, C. Deremble, J. de Lataillade, J. Kockelkoren, and J-P. Bouchaud. Anomalous price impact and the critical nature of liquidity in financial markets. Physical Review X, 1(2):021006, 2011. http://arxiv.org/abs/1105.1694.
  40. J. D. Farmer, A. Gerig, F. Lillo, and H. Waelbroeck. How efficiency shapes market impact. Quantitative Finance, 13(11):1743-1758, 2013.
  41. M. R. Young. A minimax portfolio selection rule with linear programming solution. Management Science, 44:673-683, 1998.
  42. E. Moro, L. G. Moyano, J. Vicente, A. Gerig, J. D. Farmer, G. Vaglica, F. Lillo, and R.N. Mantegna. Market impact and trading protocols of hidden orders in stock markets. Physical Review E., 80(6):066102, 2009.
  43. F. Caccioli, J.-P. Bouchaud, and Farmer J. D. A proposal for impact-adjusted valuation: Critical leverage and execution risk. arXiv:1204.0922, 2012.
  44. Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301-320, 2005.