A simulation of the effect of inbreeding on crop domestication genetics with comments on the integration of archaeobotany and genetics: a reply to Honne and Heun (original) (raw)
Related papers
Evolution of crop species: genetics of domestication and diversification
Domestication is a good model for the study of evolutionary processes because of the recent evolution of crop species (<12,000 years ago), the key role of selection in their origins, and good archaeological and historical data on their spread and diversification. Recent studies, such as quantitative trait locus mapping, genome-wide association studies and whole-genome resequencing studies, have identified genes that are associated with the initial domestication and subsequent diversification of crops. Together, these studies reveal the functions of genes that are involved in the evolution of crops that are under domestication, the types of mutations that occur during this process and the parallelism of mutations that occur in the same pathways and proteins, as well as the selective forces that are acting on these mutations and that are associated with geographical adaptation of crop species.
Cell, 2022
The precise genetic origins of the first Neolithic farming populations in Europe and Southwest Asia, as well as the processes and the timing of their differentiation, remain largely unknown. Demogenomic modeling of high-quality ancient genomes reveals that the early farmers of Anatolia and Europe emerged from a multiphase mixing of a Southwest Asian population with a strongly bottlenecked western hunter-gatherer population after the last glacial maximum. Moreover, the ancestors of the first farmers of Europe and Anatolia went through a period of extreme genetic drift during their westward range expansion, contributing highly to their genetic distinctiveness. This modeling elucidates the demographic processes at the root of the Neolithic transition and leads to a spatial interpretation of the population history of Southwest Asia and Europe during the late Pleistocene and early Holocene.
Genetic Revelations of a New Paradigm of Plant Domestication as a Landscape Level Process
Plant Breeding Reviews, 2022
As genetic and archaeological evidence has developed over the past few years, it has become apparent that our most basic assumptions about how crops became incorporated into human culture may be in need of fundamental revision. Conventionally, crop origins have been understood through a local founding model in which one or multiple centers of small localized populations are formed through cultivation leading to domesticated forms as plants adapt to local human environments either over short, or more recently, longer time frames. However, the genetic expectations of such models are not being met by archaeogenomic and archaeological data. A key concept to the local
Episodes of gene flow and selection during the evolutionary history of domesticated barley
BMC Genomics
Background Barley is one of the founder crops of Neolithic agriculture and is among the most-grown cereals today. The only trait that universally differentiates the cultivated and wild subspecies is ‘non-brittleness’ of the rachis (the stem of the inflorescence), which facilitates harvesting of the crop. Other phenotypic differences appear to result from facultative or regional selective pressures. The population structure resulting from these regional events has been interpreted as evidence for multiple domestications or a mosaic ancestry involving genetic interaction between multiple wild or proto-domesticated lineages. However, each of the three mutations that confer non-brittleness originated in the western Fertile Crescent, arguing against multiregional origins for the crop. Results We examined exome data for 310 wild, cultivated and hybrid/feral barley accessions and showed that cultivated barley is structured into six genetically-defined groups that display admixture, resulti...
Farmers without borders-genetic structuring in century old barley (Hordeum vulgare)
Heredity, 2015
The geographic distribution of genetic diversity can reveal the evolutionary history of a species. For crop plants, phylogeographic patterns also indicate how seed has been exchanged and spread in agrarian communities. Such patterns are, however, easily blurred by the intense seed trade, plant improvement and even genebank conservation during the twentieth century, and discerning fine-scale phylogeographic patterns is thus particularly challenging. Using historical crop specimens, these problems are circumvented and we show here how high-throughput genotyping of historical nineteenth century crop specimens can reveal detailed geographic population structure. Thirty-one historical and nine extant accessions of North European landrace barley (Hordeum vulgare L.), in total 231 individuals, were genotyped on a 384 single nucleotide polymorphism assay. The historical material shows constant high levels of within-accession diversity, whereas the extant accessions show more varying levels ...