Non-Cantorian Set Theory (original) (raw)
Related papers
The actual infinity in Cantor's set theory
The actual infinity Aristotle-Cantor , potential infinity . The origins of Cantor’s infinity, aleph null, the diagonal argument The natural infinity , continuum The mathematical infinity A first classification of sets Three notable examples of countable sets The 1-1 correspondence, equivalent sets, cardinality . The theory of transfinite numbers Existence and construction, existence proofs
Some critical notes on the Cantor Diagonal Argument
This paper critically examines the Cantor Diagonal Argument (CDA) that is used in set theory to draw a distinction between the cardinality of the natural numbers and that of the real numbers. In the absence of a verified English translation of the original 1891 Cantor paper from which it is said to be derived, the CDA is discussed here using a consensus from the forms found in a range of published sources (from "popular" to "professional"). Some general comments are made on these sources. The discussion then focusses on the CDA as applied to the correspondence between the set of the natural numbers, and the set of real numbers in the open range (0,1) in their expansion from decimal digits (0.123… etc.). Four points critical of the CDA are raised: (1) The conventional presentation of the CDA forms a putative new real number (X) from the "diagonal" of the chosen list of real numbers and which is therefore not on this initial list; however, it omits to consider that it may indeed be on the later part of the list, which is never exhausted however far the "diagonal" list is extended. (2) This aspect, combined with the fact that X is still composed of decimal digits, that is, it is a real number as defined, indicates that it must be on the later part of the list, that is, it is not a "new" number at all. (3) The conventional application of the CDA apparently leads to one putative "new" real number (X); however, the logical extension of this in its "exhaustive" application, that is, by using all possible different methods of alteration of the decimal digits on the "diagonal", and by reordering the list in all possible ways, leads to a list of putative "new" real numbers that become orders of magnitude longer than the chosen "diagonal" list. (4) The CDA is apparently considered to be a method that is applicable generally; however, testing this applicability with the natural numbers themselves leads to this contradiction. Following on from this, it is found that it indeed is possible to set up a one-to-one correspondence between the natural numbers and the real numbers in (0,1), that is, ! ⇔ "; this takes the form: … a 3 a 2 a 1 ⇔ 0. a 1 a 2 a 3 …, where the right hand extension of the natural number is intended to be a mirror image of the left hand extension of the real number. This may be extended to the general case of real numbers-that is, not limited to the range (0,1)-by intercalation of the digit sequence of its decimal fraction part into the sequence of the natural number part, giving the one-to-one-correspondence: … A 3 a 3 A 2 a 2 A 1 a 1 ⇔ ... A 3 A 2 A 1. a 1 a 2 a 3 … Additionally, a form of the CDA was presented by Wilfred Hodges in his 1998 critical review of "hopeless papers" dealing with the CDA; this form is also examined from the same viewpoints, and to the same conclusions. Finally, some comments are made on the concept of "infinity", pointing out that to consider this as an entity is a category error, since it simply represents an absence, that is, the absence of a termination to a process.
A Critical Re-Examination of the Fundamental Basis of Measuring Infinite Sets
Research Gate, 2024
Galileo found the idea of larger or smaller infinities impossible to comprehend, then unintentionally made them equal. Over 200 years later, Cantor insisted that his formulation of transfinite numbers was not arbitrary, but then unintentionally inherited Galileo's methodological error in the way one-to-one correspondence was used. Genuine one-to-one correspondence produces exact agreement between set size, cardinality, natural density, and probability measures. The error is subtle, and literally not visible, enabling it to evade detection for more than 380 years. It takes more than a few pages to unpick the detail, since every living mathematician has had to prove that some extremely low density (and some extremely high density) sets are countably infinite as a minor part of their undergraduate studies.
The Mathematical Development of Set Theory from Cantor to Cohen
Bulletin of Symbolic Logic, 1996
Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions cast in set-theoretic terms and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, set theory has proceeded in the opposite direction, from a web of intensions to a theory of extensionpar excellence, and like other fields of mathematics its vitality and progress have depended on a steadily growing core of mathematical structures and methods, problems and results. There is also the stronger contention that from the beginning set theory actually developed through a progression ofmathematicalmoves, whatever an...
Ortega y Gasset on Georg Cantor's Theory of Transfinite Numbers
Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and articulated a response to it. In his writings he referred many times to the advancements in modern mathematics and argued that mathematics should be based on the intuition of counting. In response to Cantor’s mathematics Ortega presented what he defined as an ‘absolute positivism’. In this theory he did not mean to naturalize cognition or to follow the guidelines of the Comte’s positivism, on the contrary. His aim was to present an alternative to Cantor’s mathematics by claiming that mathematicians are allowed to deal only with objects that are immediately present and observable to intuition. Ortega argued that the infinite set cannot be present to the intuition and therefore there is no use to differentiate between cardinals of different infinite sets.
The motives behind Cantor's set theory
The celebrated “creation” of transfinite set theory by Georg Cantor has been studied in detail by historians of mathematics. However, it has generally been overlooked that his research program cannot be adequately explained as an outgrowth of the mainstream mathematics of his day. We review the main extra-mathematical motivations behind Cantor’s very novel research, giving particular attention to a key contribution, the Grundlagen of 1883, where those motives are articulated in some detail. Evidence from other publications and correspondence is pulled out to provide clarification and a detailed interpretation of those ideas and their impact upon Cantor’s research. Throughout the paper, a special effort is made to place Cantor’s scientific undertakings within the context of developments in German science and philosophy at the time (philosophers such as Trendelenburg and Lotze, scientists like Weber, Riemann, Vogt, Haeckel), and to reflect on the German intellectual atmosphere during the 19th century.
The status of Cantorian numbers
The Review of Modern Logic, 1992
A critical evaluation of Cantor's number conception is undertaken against which the interpretations by Wang and Hallett of Cantoran set theory are measured. Wang takes Cantor's theory to tend to be a theory of numbers rather than a theory of sets, while Hallett takes Cantor as ...