Wide mutational analysis to ascertain the functional roles of eL33 in ribosome biogenesis and translation initiation (original) (raw)

Ribosomal Protein L33 Is Required for Ribosome Biogenesis, Subunit Joining, and Repression of GCN4 Translation

Molecular and Cellular Biology, 2007

We identified a mutation in the 60S ribosomal protein L33A (rpl33a-G76R) that elicits derepression of GCN4 translation (Gcd ؊ phenotype) by allowing scanning preinitiation complexes to bypass inhibitory upstream open reading frame 4 (uORF4) independently of prior uORF1 translation and reinitiation. At 37°C, rpl33a-G76R confers defects in 60S biogenesis comparable to those produced by the deletion of RPL33A (⌬A). At 28°C, however, the 60S biogenesis defect is less severe in rpl33a-G76R than in ⌬A cells, yet rpl33a-G76R confers greater derepression of GCN4 and a larger reduction in general translation. Hence, it appears that rpl33a-G76R has a stronger effect on ribosomal-subunit joining than does a comparable reduction of wild-type 60S levels conferred by ⌬A. We suggest that rpl33a-G76R alters the 60S subunit in a way that impedes ribosomalsubunit joining and thereby allows 48S rRNA complexes to abort initiation at uORF4, resume scanning, and initiate downstream at GCN4. Because overexpressing tRNA i Met suppresses the Gcd ؊ phenotype of rpl33a-G76R cells, dissociation of tRNA i Met from the 40S subunit may be responsible for abortive initiation at uORF4 in this mutant. We further demonstrate that rpl33a-G76R impairs the efficient processing of 35S and 27S pre-rRNAs and reduces the accumulation of all four mature rRNAs, indicating an important role for L33 in the biogenesis of both ribosomal subunits.

Final pre-40S maturation depends on the functional integrity of the 60S subunit ribosomal protein L3

PLoS genetics, 2014

Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 39 end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic preribosomal particles.

Ribosomal mutation in helix 32 of 18S rRNA alters fidelity of eukaryotic translation start site selection

FEBS Letters, 2019

The 40S ribosome plays a critical role in start codon selection. To gain insights into the role of its 18S rRNA in start codon selection, a suppressor screen was performed that suppressed the preferential UUG start codon recognition (Suppressor of initiation codon: Sui À phenotype) associated with the eIF5 G31R mutant. The C1209U mutation in helix h32 of 18S rRNA was found to suppress the Sui À and Gcn À (failure to derepress GCN4 expression) phenotype of the eIF5 G31R mutant. The C1209U mutation suppressed Sui À and Gcd À (constitutive derepression of GCN4 expression) phenotype of eIF2b S264Y , eIF1 K60E , and eIF1A-DC mutation. We propose that the C1209U mutation in 40S ribosomal may perturb the premature head rotation in 'Closed/P IN ' state and enhance the stringency of translation start site selection.

Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits

Nature Structural & Molecular Biology, 2012

In the final steps of yeast ribosome synthesis, immature translation-incompetent pre-40S particles that contain 20S pre-rRNA are converted to the mature translation-competent subunits containing the 18S rRNA. An assay for 20S pre-rRNA cleavage in purified pre-40S particles showed that cleavage by the PIN domain endonuclease Nob1 was strongly stimulated by the GTPase activity of the cytoplasmic translation initiation factor eIF5b/Fun12. Cleavage of the 20S pre-rRNA was also inhibited in vivo and in vitro by blocking binding of Fun12 to the 25S rRNA through specific methylation of its binding site. Cleavage competent pre-40S particles stably associate with Fun12 and form 80S complexes with 60S ribosomal subunits. We propose that recruitment of 60S subunits promotes GTP-hydrolysis by Fun12, leading to structural rearrangements within the pre-40S particle that bring Nob1 and the pre-rRNA cleavage site together.

Functional analysis of Saccharomyces cerevisiae ribosomal protein Rpl3p in ribosome synthesis

Nucleic Acids Research, 2007

Ribosome synthesis in eukaryotes requires a multitude of transacting factors. These factors act at many steps as the pre-ribosomal particles travel from the nucleolus to the cytoplasm. In contrast to the well-studied transacting factors, little is known about the contribution of the ribosomal proteins to ribosome biogenesis. Herein, we have analysed the role of ribosomal protein Rpl3p in 60S ribosomal subunit biogenesis. In vivo depletion of Rpl3p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability of early and intermediate pre-ribosomal particles, as evidenced by the low steady-state levels of 27SA 3 , 27SB S and 7S L/S precursors. Furthermore, depletion of Rpl3p impairs the nucleocytoplasmic export of pre-60S ribosomal particles. Interestingly, flow cytometry analysis indicates that Rpl3p-depleted cells arrest in the G1 phase. Altogether, we suggest that upon depletion of Rpl3p, early assembly of 60S ribosomal subunits is aborted and subsequent steps during their maturation and export prevented.

Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates

Science

Ribosome assembly in eukaryotes requires approximately 200 essential assembly factors (AFs), and occurs via ordered events that initiate in the nucleolus and culminate in the cytoplasm. Here we present the cryo-electron microscopy (cryo-EM) structure of a late cytoplasmic 40S ribosome assembly intermediate from Saccharomyces cerevisiae. The positions of bound AFs were defined using cryo-EM reconstructions of pre-ribosomal complexes lacking individual components. All seven AFs are positioned to prevent each step in the translation initiation pathway by obstructing the binding sites for initiation factors, by preventing the opening of the mRNA channel, by blocking 60S subunit joining, and by disrupting the decoding site. We suggest that these highly redundant mechanisms ensure that pre-40S particles do not enter the translation pathway, which would result in their rapid degradation. Implications for the regulation of 40S maturation are also discussed.

Methylation of yeast ribosomal protein Rpl3 promotes translational elongation fidelity

RNA, 2016

Rpl3, a highly conserved ribosomal protein, is methylated at histidine 243 by the Hpm1 methyltransferase in Saccharomyces cerevisiae. Histidine 243 lies close to the peptidyl transferase center in a functionally important region of Rpl3 designated as the basic thumb that coordinates the decoding, peptidyl transfer, and translocation steps of translation elongation. Hpm1 was recently implicated in ribosome biogenesis and translation. However, the biological role of methylation of its Rpl3 substrate has not been identified. Here we interrogate the role of Rpl3 methylation at H243 by investigating the functional impact of mutating this histidine residue to alanine (rpl3-H243A). Akin to Hpm1-deficient cells, rpl3-H243A cells accumulate 35S and 23S pre-rRNA precursors to a similar extent, confirming an important role for histidine methylation in pre-rRNA processing. In contrast, Hpm1-deficient cells but not rpl3-H243A mutants show perturbed levels of ribosomal subunits. We show that Hpm1 has multiple substrates in different subcellular fractions, suggesting that methylation of proteins other than Rpl3 may be important for controlling ribosomal subunit levels. Finally, translational fidelity assays demonstrate that like Hpm1-deficient cells, rpl3-H243A mutants have defects in translation elongation resulting in decreased translational accuracy. These data suggest that Rpl3 methylation at H243 is playing a significant role in translation elongation, likely via the basic thumb, but has little impact on ribosomal subunit levels. Hpm1 is therefore a multifunctional methyltransferase with independent roles in ribosome biogenesis and translation.