Strategies for the discovery and identification of food protein-derived biologically active peptides (original) (raw)

Abstract

Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science and Technology. 69: 289-305.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (189)

  1. Abedin, M., Karim, A., Gan, C., Ghazali, F., Barzideh, Z., Zzaman, W., & Zaidul, I. (2015). Identification of angiotensin I converting enzyme inhibitory and radical scavenging bioactive peptides from sea cucumber (Stichopus vastus) collagen hydrolysates through optimization. International Food Research Journal, 22, 1074-1082.
  2. Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98, 244-256.
  3. Arai, S., Yasuoka, A., & Abe, K. (2008). Functional food science and food for specified health use policy in Japan: State of the art. Current Opinion in Lipidology, 19, 69-73.
  4. Asoodeh, A., Haghighi, L., Chamani, J., Ansari-Ogholbeyk, M. A., Mojallal-Tabatabaei, Z., & Lagzian, M. (2014). Potential angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate: Biochemical characterization and molecular docking study. Journal of Cereal Science, 60, 92-98.
  5. Aydin, S., Aksoy, A., Aydin, S., Kalayci, M., Yilmaz, M., Kuloglu, T., Citil, C., & Catak, Z. (2014). Today's and yesterday's of pathophysiology: Biochemistry of metabolic syndrome and animal models. Nutrition, 30, 1-9.
  6. Bhat, Z. F., Kumar, S., & Bhat, H. F. (2015). Bioactive peptides of animal origin: A review. Journal of Food Science and Technology, 52, 5377-5392.
  7. Blagojevic, V., Chramow, A., Schneider, B. B., Covey, T. R., & Bohme, D. K. (2011). Differential mobility spectrometry of isomeric protonated dipeptides: modifier and field effects on ion mobility and stability. Analytical Chemistry, 83, 3470-3476.
  8. Bouhallab, S., Morgan, F., Henry, G., Mollé, D., & Léonil, J. (1999). Formation of stable covalent dimer explains the high solubility at pH 4.6 of lactose-β-lactoglobulin conjugates heated near neutral pH. Journal of Agricultural and Food Chemistry, 47, 1489-1494.
  9. Boutrou, R., Gaudichon, C., Dupont, D., Jardin, J., Airinei, G., Marsset-Baglieri, A., Benamouzig, R., Tomé, D., & Leonil, J. (2013). Sequential release of milk protein- derived bioactive peptides in the jejunum in healthy humans. American Journal of Clinical Nutrition, 97, 1314-1323.
  10. Boutrou, R., Henry, G., & Sanchez-Rivera, L. (2015). On the trail of milk bioactive peptides in human and animal intestinal tracts during digestion: A review. Dairy Science & Technology, 95, 815-829.
  11. Butré, C. I., Sforza, S., Gruppen, H., & Wierenga, P. A. (2014). Determination of the influence of substrate concentration on enzyme selectivity using whey protein isolate and Bacillus licheniformis protease. Journal of Agricultural and Food Chemistry, 62, 10230-10239.
  12. Butré, C. I., Sforza, S., Wierenga, P. A., & Gruppen, H. (2015). Determination of the influence of the pH of hydrolysis on enzyme selectivity of Bacillus licheniformis protease towards whey protein isolate. International Dairy Journal, 44, 44-53.
  13. Caira, S., Pinto, G., Vitaglione, P., Dal Piaz, F., Ferranti, P., & Addeo, F. (2016). Identification of casein peptides in plasma of subjects after a cheese-enriched diet. Food Research International, 84, 108-112.
  14. Capriotti, A. L., Cavaliere, C., Piovesana, S., Samperi, R., & Laganà, A. (2016). Recent trends in the analysis of bioactive peptides in milk and dairy products. Analytical and Bioanalytical Chemistry, 408, 2677-2685.
  15. Carrasco-Castilla, J., Hernández-Álvarez, A. J., Jiménez-Martínez, C., Gutiérrez-López, G. F., & Dávila-Ortiz, G. (2012). Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Engineering Reviews, 4, 224-243.
  16. Cattaneo, S., Stuknytė, M., Masotti, F., & De Noni, I. (2017). Protein breakdown and release of β-casomorphins during in vitro gastro-intestinal digestion of sterilised model systems of liquid infant formula. Food Chemistry, 217, 476-482.
  17. Chabance, B., Jollès, P., Izquierdo, C., Mazoyer, E., Francoual, C., Drouet, L., & Fiat, A.-M. (1995). Characterization of an antithrombotic peptide from α-casein in newborn plasma after milk ingestion. British Journal of Nutrition, 73, 583-590.
  18. Chabance, B., Marteau, P., Rambaud, J., Migliore-Samour, D., Boynard, M., Perrotin, P., Guillet, R., Jolles, P., & Fiat, A. (1998). Casein peptide release and passage to the blood in humans during digestion of milk or yogurt. Biochimie, 80, 155-165.
  19. Chang, Y.-W., & Alli, I. (2012). In silico assessment: Suggested homology of chickpea (Cicer arietinum L.) legumin and prediction of ACE-inhibitory peptides from chickpea proteins using BLAST and BIOPEP analyses. Food Research International, 49, 477-486.
  20. Chen, J. C., Wang, J., Zheng, B. D., Pang, J., Chen, L. J., Lin, H. T., & Guo, X. (2015). Simultaneous determination of 8 small antihypertensive peptides with tyrosine at the C- terminal in Laminaria japonica hydrolysates by RP-HPLC method. Journal of Food Processing and Preservation, 40, 492-501.
  21. Cheung, I. W., Nakayama, S., Hsu, M. N., Samaranayaka, A. G., & Li-Chan, E. C. (2009). Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. Journal of Agricultural and Food Chemistry, 57, 9234-9242.
  22. Dallas, D. C., Guerrero, A., Parker, E. A., Robinson, R. C., Gan, J., German, J. B., Barile, D., & Lebrilla, C. B. (2015). Current peptidomics: Applications, purification, identification, quantification, and functional analysis. Proteomics, 15, 1026-1038.
  23. Darewicz, M., Borawska, J., & Pliszka, M. (2016). Carp proteins as a source of bioactive peptides-an in silico approach. Czech Journal of Food Science, 34, 111-117.
  24. de Castro, R. J. S., & Sato, H. H. (2015). Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, 74, 185-198.
  25. de Leeuw, P. W., Van der Zander, K., Kroon, A. A., Rennenberg, R. M., & Koning, M. M. (2009). Dose-dependent lowering of blood pressure by dairy peptides in mildly hypertensive subjects. Blood Pressure, 18, 44-50.
  26. De Noni, I., FitzGerald, R. J., Korhonen, H. J., Le Roux, Y., Livesey, C. T., Thorsdottir, I., Tomé, D., & Witkamp, R. (2009). Review of the potential health impact of β- casomorphins and related peptides. EFSA Sci Rep, 231, 1-107.
  27. De Noni, I., Stuknytė, M., & Cattaneo, S. (2015). Identification of β-casomorphins 3 to 7 in cheeses and in their in vitro gastrointestinal digestates. LWT -Food Science and Technology, 63, 550-555.
  28. del Mar Contreras, M., Hernández-Ledesma, B., Amigo, L., Martín-Álvarez, P. J., & Recio, I. (2011). Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: optimization by response surface methodology. LWT-Food Science and Technology, 44, 9-15.
  29. Dia, V. P., Torres, S., De Lumen, B. O., Erdman Jr, J. W., & De Mejia, E. G. (2009). Presence of lunasin in plasma of men after soy protein consumption. Journal of Agricultural and Food Chemistry, 57, 1260-1266.
  30. Dupont, D., Mandalari, G., Mollé, D., Jardin, J., Rolet-Répécaud, O., Duboz, G., Léonil, J., Mills, C. E., & Mackie, A. R. (2010). Food processing increases casein resistance to simulated infant digestion. Molecular Nutrition & Food Research, 54, 1677-1689.
  31. Dziuba, B., & Dziuba, M. (2014). Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects. Acta Scientiarum Polonorum Technologia Alimentaria, 13, 5-26.
  32. Dziuba, J., Iwaniak, A., & Minkiewicz, P. (2003). Computer-aided characteristics of proteins as potential precursors of bioactive peptides. Polimery, 48, 50-53.
  33. Dziuba, M., & Darewicz, M. (2007). Food proteins as precursors of bioactive peptides- classification into families. Food Science and Technology International, 13, 393-404.
  34. EFSA. (2011). Scientific and technical guidance for the preparation and presentation of an application for authorisation of a health claim EFSA Journal, 9, 2170-2205.
  35. EFSA. (2016). General scientific guidance for stakeholders on health claim applications. EFSA Journal, 14, 4367-4402.
  36. Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., Barberá, R., Brodkorb, A., Cattenoz, T., Clemente, A., Comi, I., Dupont, D., Garcia-Llatas, G., Lagarda, M. J., Le Feunteun, S., JanssenDuijghuijsen, L., Karakaya, S., Lesmes, U., Mackie, A. R., Martins, C., Meynier, A., Miralles, B., Murray, B. S., Pihlanto, A., Picariello, G., Santos, C. N., Simsek, S., Recio, I., Rigby, N., Rioux, L.-E., Stoffers, H., Tavares, A., Tavares, L., Turgeon, S., Ulleberg, E. K., Vegarud, G. E., Vergères, G., & Portmann, R. (2016). The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 88, Part B, 217-225.
  37. Eisele, T., Stressler, T., Kranz, B., & Fischer, L. (2012). Quantification of dabsylated di-and tri- peptides in fermented milk. Food Chemistry, 135, 2808-2813.
  38. Fekete, A. A., Givens, D. I., & Lovegrove, J. A. (2013). The impact of milk proteins and peptides on blood pressure and vascular function: A review of evidence from human intervention studies. Nutrition Research Reviews, 26, 177-190.
  39. Fernández-Musoles, R., Castelló-Ruiz, M., Arce, C., Manzanares, P., Ivorra, M. D., & Salom, J. B. (2014). Antihypertensive mechanism of lactoferrin-derived peptides: Angiotensin receptor blocking effect. Journal of Agricultural and Food Chemistry, 62, 173-181.
  40. Foltz, M., Meynen, E. E., Bianco, V., van Platerink, C., Koning, T. M. M. G., & Kloek, J. (2007). Angiotensin converting enzyme inhibitory peptides from a lactotripeptide- enriched milk beverage are absorbed intact into the circulation. Journal of Nutrition, 137, 953-958.
  41. Foltz, M., Van Buren, L., Klaffke, W., & Duchateau, G. S. (2009). Modeling of the relationship between dipeptide structure and dipeptide stability, permeability, and ACE inhibitory activity. Journal of Food Science, 74, H243-H251.
  42. Foltz, M., van der Pijl, P. C., & Duchateau, G. S. M. J. E. (2010). Current in vitro testing of bioactive peptides is not valuable. The Journal of Nutrition, 140, 117-118.
  43. Fu, Y., Wu, W., Zhu, M., & Xiao, Z. (2015). In silico assessment of the potential of patatin as a precursor of bioactive peptides. Journal of Food Biochemistry, 40, 366-370.
  44. Fu, Y., Young, J. F., Løkke, M. M., Lametsch, R., Aluko, R. E., & Therkildsen, M. (2016). Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. Journal of Functional Foods, 24, 196-206.
  45. Gaudel, C., Nongonierma, A. B., Maher, S., Flynn, S., Murray, B. A., Kelly, P. M., Krause, M., FitzGerald, R. J., & Newsholme, P. (2013). A whey protein hydrolysate promotes insulinotropic activity in a clonal pancreatic cell line and enhances glycemic function in ob/ob mice. Journal of Nutrition, 143, 1109-1114
  46. Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J., & Aluko, R. E. (2014). Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 6, 384-394.
  47. Giroux, H. J., Robitaille, G., & Britten, M. (2016). Controlled release of casein-derived peptides in the gastrointestinal environment by encapsulation in water-in-oil-in-water double emulsions. LWT-Food Science and Technology, 69, 225-232.
  48. Gleeson, J. P., Heade, J., Ryan, S. M., & Brayden, D. J. (2015). Stability, toxicity and intestinal permeation enhancement of two food-derived antihypertensive tripeptides, Ile-Pro-Pro and Leu-Lys-Pro. Peptides, 71, 1-7.
  49. Gleeson, J. P., Ryan, S. M., & Brayden, D. J. (2016). Oral delivery strategies for nutraceuticals: Delivery vehicles and absorption enhancers. Trends in Food Science & Technology, 53, 90-101.
  50. Groleau, P. E., Morin, P., Gauthier, S. F., & Pouliot, Y. (2003). Effect of physicochemical conditions on peptide-peptide interactions in a tryptic hydrolysate of β-lactoglobulin and identification of aggregating peptides. Journal of Agricultural and Food Chemistry, 51, 4370-4375.
  51. Gu, R.-Z., Li, C.-Y., Liu, W.-Y., Yi, W.-X., & Cai, M.-Y. (2011a). Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Research International, 44, 1536-1540.
  52. Gu, Y., Majumder, K., & Wu, J. (2011b). QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Research International, 44, 2465-2474.
  53. Halim, N. R. A., Yusof, H. M., & Sarbon, N. M. (2016). Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends in Food Science & Technology, 51, 24-33.
  54. Harscoat-Schiavo, C., Nioi, C., Ronat-Heit, E., Paris, C., Vanderesse, R., Fournier, F., & Marc, I. (2012). Hydrophilic properties as a new contribution for computer-aided identification of short peptides in complex mixtures. Analytical and Bioanalytical Chemistry, 403, 1939- 1949.
  55. Havenaar, R., de Jong, A., Koenen, M. E., van Bilsen, J., Janssen, A. M., Labij, E., & Westerbeek, H. J. M. (2013). Digestibility of transglutaminase cross-linked caseinate versus native caseinate in an in vitro multicompartmental model simulating young child and adult gastrointestinal conditions. Journal of Agricultural and Food Chemistry, 61, 7636-7644.
  56. He, R., Aluko, R. E., & Ju, X.-R. (2014). Evaluating molecular mechanism of hypotensive peptides interactions with renin and angiotensin converting enzyme. PLoS ONE, 9, e91051. Hernández-Ledesma, B., García-Nebot, M. J., Fernández-Tomé, S., Amigo, L., & Recio, I. (2014). Dairy protein hydrolysates: Peptides for health benefits. International Dairy Journal, 38, 82-100.
  57. Hong, S.-M., Tanaka, M., Yoshii, S., Mine, Y., & Matsui, T. (2013). Enhanced visualization of small peptides absorbed in rat small intestine by phytic-acid-aided matrix-assisted Laser desorption/ionization-imaging mass spectrometry. Analytical Chemistry, 85, 10033- 10039.
  58. Hsieh, C.-C., Hernández-Ledesma, B., Fernández-Tomé, S., Weinborn, V., Barile, D., & de Moura Bell, J. M. L. N. (2015). Milk proteins, peptides, and oligosaccharides: Effects against the 21st century disorders. BioMed Research International, In press, doi: 10.1155/2015/146840, 146840.
  59. Hsieh, C.-H., Wang, T.-Y., Hung, C.-C., Jao, C.-L., Hsieh, Y.-L., Wu, S.-X., & Hsu, K.-C. (2016). In silico, in vitro and in vivo analyses of dipeptidyl peptidase IV inhibitory activity and the antidiabetic effect of sodium caseinate hydrolysate. Food & Function, 7, 1122-1128.
  60. Huang, B.-B., Lin, H.-C., & Chang, Y.-W. (2015). Analysis of proteins and potential bioactive peptides from tilapia (Oreochromis spp.) processing co-products using proteomic techniques coupled with BIOPEP database. Journal of Functional Foods, 19, Part A, 629-640.
  61. Ichikawa, S., Morifuji, M., Ohara, H., Matsumoto, H., Takeuchi, Y., & Sato, K. (2010). Hydroxyproline-containing dipeptides and tripeptides quantified at high concentration in human blood after oral administration of gelatin hydrolysate. International Journal of Food Sciences and Nutrition, 61, 52-60.
  62. Iwaniak, A., Minkiewicz, P., Darewicz, M., Protasiewicz, M., & Mogut, D. (2015). Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. Journal of Functional Foods, 16, 334-351.
  63. Jao, C.-L., Huang, S.-L., & Hsu, K.-C. (2012). Angiotensin I-converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. Biomedicine, 2, 130-136.
  64. Jauhiainen, T., Ronnback, M., Vapaatalo, H., Wuolle, K., Kautiainen, H., Groop, P. H., & Korpela, R. (2010). Long-term intervention with Lactobacillus helveticus fermented milk reduces augmentation index in hypertensive subjects. European Journal of Clinical Nutrition, 64, 424-431.
  65. Jonker, J. T., Wijngaarden, M. A., Kloek, J., Groeneveld, Y., Gerhardt, C., Brand, R., Kies, A. K., Romijn, J. A., & Smit, J. W. A. (2011). Effects of low doses of casein hydrolysate on post-challenge glucose and insulin levels. European Journal of Internal Medicine, 22, 245-248.
  66. Kaiser, S., Martin, M., Lunow, D., Rudolph, S., Mertten, S., Möckel, U., Deußen, A., & Henle, T. (2016). Tryptophan-containing dipeptides are bioavailable and inhibit plasma human angiotensin-converting enzyme in vivo. International Dairy Journal, 52, 107-114.
  67. Kalyankar, P., Zhu, Y., O'Cuinn, G., & FitzGerald, R. J. (2013). Investigation of the substrate specificity of glutamyl endopeptidase using purified bovine β-casein and synthetic peptides. Journal of Agricultural and Food Chemistry, 61, 3193-3204.
  68. Kaszycki, J. L., Bowman, A. P., & Shvartsburg, A. A. (2016). Ion mobility separation of peptide isotopomers. Journal of the American Society for Mass Spectrometry, 27, 795-799.
  69. Keska, P., & Stadnik, J. (2016). Porcine myofibrillar proteins as potential precursors of bioactive peptides -an in silico study. Food & Function, 7, 2878-2885.
  70. Lacroix, I. M., & Li-Chan, E. C. (2015). Comparison of the susceptibility of porcine and human dipeptidyl-peptidase IV to inhibition by protein-derived peptides. Peptides, 69, 19-25.
  71. Lacroix, I. M., & Li-Chan, E. C. (2016). Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation-Current knowledge and future research considerations. Trends in Food Science & Technology, 54, 1-16.
  72. Lacroix, I. M., Meng, G., Cheung, I. W., & Li-Chan, E. C. (2016). Do whey protein-derived peptides have dual dipeptidyl-peptidase IV and angiotensin I-converting enzyme inhibitory activities? Journal of Functional Foods, 21, 87-96.
  73. Lacroix, I. M. E., & Li-Chan, E. C. Y. (2012). Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. Journal of Functional Foods, 4, 403-422.
  74. Lafarga, T., O'Connor, P., & Hayes, M. (2015). In silico methods to identify meat-derived prolyl endopeptidase inhibitors. Food Chemistry, 175, 337-343.
  75. Lahrichi, S. L., Affolter, M., Zolezzi, I. S., & Panchaud, A. (2013). Food Peptidomics: Large scale analysis of small bioactive peptides -A pilot study. Journal of Proteomics, 88, 83- 91.
  76. Lalor, F., & Wall, P. G. (2011). Health claims regulations: Comparison between USA, Japan and European Union. British Food Journal, 113, 298-313.
  77. Le Maux, S., Nongonierma, A. B., & FitzGerald, R. J. (2015a). Improved short peptide identification using HILIC-MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chemistry, 175, 847-854.
  78. Le Maux, S., Nongonierma, A. B., Murray, B., Kelly, P. M., & FitzGerald, R. J. (2015b). Identification of short peptide sequences in the nanofiltration permeate of a bioactive whey protein hydrolysate. Food Research International, 77, 534-539.
  79. Ledoux, N., Mahe, S., Dubarry, M., Bourras, M., Benamouzig, R., & Tome, D. (1999). Intraluminal immunoreactive caseinomacropeptide after milk protein ingestion in humans. Food/Nahrung, 43, 196-200.
  80. Lee, H. S., & Lee, K. J. (2000). Cathepsin B inhibitory peptides derived from β-casein. Peptides, 21, 807-809.
  81. Lemes, A. C., Sala, L., Ores, J. d. C., Braga, A. R. C., Egea, M. B., & Fernandes, K. F. (2016). A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Sciences, 17, 950.
  82. Li-Chan, E. C. (2015). Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1, 28-37.
  83. Li, P., Jia, J., Fang, M., Zhang, L., Guo, M., Xie, J., Xia, Y., Zhou, L., & Wei, D. (2014). In vitro and in vivo ACE inhibitory of pistachio hydrolysates and in silico mechanism of identified peptide binding with ACE. Process Biochemistry, 49, 898-904.
  84. Li, Z., Paulson, A. T., & Gill, T. A. (2015). Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. Journal of Functional Foods, 19, Part A, 733-743.
  85. Maestri, E., Marmiroli, M., & Marmiroli, N. (2016). Bioactive peptides in plant-derived foodstuffs. Journal of Proteomics, 147, 140-155.
  86. Majumder, K., Liang, G., Chen, Y., Guan, L., Davidge, S. T., & Wu, J. (2015). Egg ovotransferrin-derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats. Molecular Nutrition & Food Research, 59, 1735-1744.
  87. Majumder, K., & Wu, J. (2009). Angiotensin I converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of cooked eggs. Journal of Agricultural and Food Chemistry, 57, 471-477.
  88. Majumder, K., & Wu, J. (2010). A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Research International, 43, 1371-1378.
  89. Maldonado-Valderrama, J., Wilde, P. J., Mulholland, F., & Morris, V. J. (2012). Protein unfolding at fluid interfaces and its effect on proteolysis in the stomach. Soft Matter, 8, 4402-4414.
  90. Manders, R. J., Koopman, R., Sluijsmans, W. E., van den Berg, R., Verbeek, K., Saris, W. H., Wagenmakers, A. J., & van Loon, L. J. (2006a). Co-ingestion of a protein hydrolysate with or without additional leucine effectively reduces postprandial blood glucose excursions in Type 2 diabetic men. Journal of Nutrition, 136, 1294-1299.
  91. Manders, R. J., Wagenmakers, A. J., Koopman, R., Zorenc, A. H., Menheere, P. P., Schaper, N. C., Saris, W. H., & van Loon, L. J. (2005). Co-ingestion of a protein hydrolysate and amino acid mixture with carbohydrate improves plasma glucose disposal in patients with type 2 diabetes. The American Journal of Clinical Nutrition, 82, 76-83.
  92. Manders, R. J. F., Praet, S. F. E., Meex, R. C. R., Koopman, R., de Roos, A. L., Wagenmakers, A. J. M., Saris, W. H. M., & van Loon, L. J. C. (2006b). Protein hydrolysate/leucine ingestion reduces the prevalence of hyperglycemia in Type 2 diabetic patients. Diabetes Care, 29, 2721-2722.
  93. Manders, R. J. F., Praet, S. F. E., Vikstrom, M. H., Saris, W. H. M., & van Loon, L. J. C. (2007). Protein hydrolysate co-ingestion does not modulate 24 h glycemic control in long- standing type 2 diabetes patients. European Journal of Clinical Nutrition, 63, 121-126.
  94. Martínez-Alvarez, O., Chamorro, S., & Brenes, A. (2015). Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Research International, 73, 204-212.
  95. Mat, D. J., Le Feunteun, S., Michon, C., & Souchon, I. (2016). In vitro digestion of foods using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids. Food Research International, 88, 226-233.
  96. Matsui, T., Tamaya, K., Seki, E., Osajima, K., Matsumoto, K., & Kawasaki, T. (2002). Val-Tyr as a natural antihypertensive dipeptide can be absorbed into the human circulatory blood system. Clinical and Experimental Pharmacology and Physiology, 29, 204-208.
  97. Meisel, H., Fairweather-Tait, S., FitzGerald, R. J., Hartmann, R., Lane, C. N., McDonagh, D., Teucher, B., & Wal, J. M. (2003). Detection of caseinophosphopeptides in the distal ileostomy fluid of human subjects. British Journal of Nutrition, 89, 351-358.
  98. Mercier, A., Gauthier, S. F., & Fliss, I. (2004). Immunomodulating effects of whey proteins and their enzymatic digests. International Dairy Journal, 14, 175-183.
  99. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., & Dupont, D. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food & Function, 5, 1113-1124.
  100. Miner-Williams, W. M., Stevens, B. R., & Moughan, P. J. (2014). Are intact peptides absorbed from the healthy gut in the adult human? Nutrition Research Reviews, 27, 308-329.
  101. Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M., & Darewicz, M. (2008). BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC International, 91, 965-980.
  102. Minkiewicz, P., Dziuba, J., & Michalska, J. (2011). Bovine meat proteins as potential precursors of biologically active peptides -a computational study based on the BIOPEP database. Food Science and Technology International, 17, 39-45.
  103. Mizuno, S., Matsuura, K., Gotou, T., Nishimura, S., Kajimoto, O., Yabune, M., Kajimoto, Y., & Yamamoto, N. (2005). Antihypertensive effect of casein hydrolysate in a placebo- controlled study in subjects with high-normal blood pressure and mild hypertension. British Journal of Nutrition, 94, 84-91.
  104. Mohan, A., Rajendran, S. R., He, Q. S., Bazinet, L., & Udenigwe, C. C. (2015). Encapsulation of food protein hydrolysates and peptides: A review. RSC Advances, 5, 79270-79278.
  105. Monogioudi, E., Faccio, G., Lille, M., Poutanen, K., Buchert, J., & Mattinen, M.-L. (2011). Effect of enzymatic cross-linking of β-casein on proteolysis by pepsin. Food Hydrocolloids, 25, 71-81.
  106. Morifuji, M., Ishizaka, M., Baba, S., Fukuda, K., Matsumoto, H., Koga, J., Kanegae, M., & Higuchi, M. (2010). Comparison of different sources and degrees of hydrolysis of dietary protein: Effect on plasma amino acids, dipeptides, and insulin responses in human subjects. Journal of Agricultural and Food Chemistry, 58, 8788-8797.
  107. Morifuji, M., Koga, J., Kawanaka, K., & Higuchi, M. (2009). Branched-chain amino acid- containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake rate in L6 myotubes and isolated skeletal muscles. Journal of Nutritional Science and Vitaminology, 55, 81-86.
  108. Mukhopadhya, A., Noronha, N., Bahar, B., Ryan, M. T., Murray, B., Kelly, P., O'Loughlin, I., O'doherty, J. V., & Sweeney, T. (2015). The anti-inflammatory potential of a moderately hydrolysed casein and its 5 kDa fraction in in vitro and ex vivo models of the gastrointestinal tract. Food & Function, 6, 612-621.
  109. Murray, B. A., Walsh, D. J., & FitzGerald, R. J. (2004). Modification of the furanacryloyl-L- phenylalanylglycylglycine assay for determination of angiotensin-I-converting enzyme inhibitory activity. Journal of Biochemical and Biophysical Methods, 59, 127-137.
  110. Naik, L., Mann, B., Bajaj, R., Sangwan, R., & Sharma, R. (2013). Process optimization for the production of bio-functional whey protein hydrolysates: adopting response surface methodology. International Journal of Peptide Research and Therapeutics, 19, 231-237.
  111. Nelson, R. W., & Reusch, C. E. (2014). Animal models of disease: Classification and etiology of diabetes in dogs and cats. Journal of Endocrinology, 222, T1-T9.
  112. Nikolaev, I., Sforza, S., Lambertini, F., Ismailova, D. Y., Khotchenkov, V., Volik, V., Dossena, A., Popov, V., & Koroleva, O. (2016). Biocatalytic conversion of poultry processing leftovers: Optimization of hydrolytic conditions and peptide hydrolysate characterization. Food Chemistry, 197, 611-621.
  113. Niu, Z., Conejos-Sánchez, I., Griffin, B. T., O'Driscoll, C. M., & Alonso, M. J. (2016). Lipid- based nanocarriers for oral peptide delivery. Advanced Drug Delivery Reviews, 106, Part B, 337-354.
  114. Nongonierma, A. B., & FitzGerald, R. J. (2011). Enzymes exogenous to milk in dairy technology | Proteinases. In J. W. Fuquay (Ed.), Encyclopedia of Dairy Sciences (2 ed., pp. 289-296). San Diego: Academic Press.
  115. Nongonierma, A. B., & FitzGerald, R. J. (2012a). Biofunctional properties of caseinophosphopeptides in the oral cavity. Caries Research, 46, 234-267.
  116. Nongonierma, A. B., & FitzGerald, R. J. (2012b). Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase. Peptides, 37, 263-272.
  117. Nongonierma, A. B., & FitzGerald, R. J. (2013a). Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk-derived dipeptides and hydrolysates. Peptides, 39, 157- 163.
  118. Nongonierma, A. B., & FitzGerald, R. J. (2013b). Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: Influence of fractionation, stability to simulated gastrointestinal digestion and food-drug interaction. International Dairy Journal, 32, 33- 39.
  119. Nongonierma, A. B., & FitzGerald, R. J. (2014). An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 165, 489-498.
  120. Nongonierma, A. B., & FitzGerald, R. J. (2015a). Bioactive properties of milk proteins in humans: A review. Peptides, 73, 20-34.
  121. Nongonierma, A. B., & FitzGerald, R. J. (2015b). The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A review. Journal of Functional Foods, 640, 640-656.
  122. Nongonierma, A. B., & FitzGerald, R. J. (2015c). Utilisation of the isobole methodology to study dietary peptide-drug and peptide-peptide interactive effects on dipeptidyl peptidase IV (DPP-IV) inhibition. Food & Function, 6, 312-319.
  123. Nongonierma, A. B., & FitzGerald, R. J. (2016a). Learnings from quantitative structure activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: A review. RSC Advances, 6, 75400-75413.
  124. Nongonierma, A. B., & FitzGerald, R. J. (2016b). Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science & Technology, 50, 26-43.
  125. Nongonierma, A. B., & FitzGerald, R. J. (2016c). Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides, 79, 1-7.
  126. Nongonierma, A. B., Le Maux, S., Esteveny, C., & FitzGerald, R. J. (2017). Response surface methodology (RSM) applied to the generation of casein hydrolysates with antioxidant and dipeptidyl peptidase IV (DPP-IV) inhibitory properties. Journal of the Science of Food and Agriculture, 97, 1093-1101.
  127. Nongonierma, A. B., Le Maux, S., Hamayon, J., & FitzGerald, R. J. (2016a). Strategies for the release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in an enzymatic hydrolyzate of α-lactalbumin. Food & Function, 7, 3437-3443.
  128. Nongonierma, A. B., Mooney, C., Shields, D. C., & FitzGerald, R. J. (2013). Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chemistry, 141, 644-653.
  129. Nongonierma, A. B., Mooney, C., Shields, D. C., & FitzGerald, R. J. (2014). In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP- IV) inhibitors. Peptides, 57, 43-51.
  130. Nongonierma, A. B., O'Keeffe, M. B., & FitzGerald, R. J. (2016b). Milk protein hydrolysates and bioactive peptides. In P. L. H. McSweeney & J. A. O'Mahony (Eds.), Advanced Dairy Chemistry (4 ed., pp. 417-482). New-York, USA: Springer-Verlag.
  131. Norris, R., Casey, F., FitzGerald, R. J., Shields, D. C., & Mooney, C. (2012). Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chemistry, 133, 1349-1354.
  132. O'Neill, S., & O'Driscoll, L. (2015). Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obesity Reviews, 16, 1-12.
  133. O'Keeffe, M. B., & FitzGerald, R. J. (2015). Identification of short peptide sequences in complex milk protein hydrolysates. Food Chemistry, 184, 140-146.
  134. Pampanin, D. M., Larssen, E., Provan, F., Sivertsvik, M., Ruoff, P., & Sydnes, M. O. (2012). Detection of small bioactive peptides from Atlantic herring (Clupea harengus L.). Peptides, 34, 423-426.
  135. Pan, D., Cao, J., Guo, H., & Zhao, B. (2012). Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate. Food Chemistry, 130, 121-126.
  136. Panchaud, A., Affolter, M., & Kussmann, M. (2012). Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects. Journal of Proteomics, 75, 3546-3559.
  137. Picariello, G., Ferranti, P., & Addeo, F. (2016). Use of brush border membrane vesicles to simulate the human intestinal digestion. Food Research International, 88, Part B, 327- 335.
  138. Picariello, G., Ferranti, P., Fierro, O., Mamone, G., Caira, S., Di Luccia, A., Monica, S., & Addeo, F. (2010). Peptides surviving the simulated gastrointestinal digestion of milk proteins: Biological and toxicological implications. Journal of Chromatography B, 878, 295-308.
  139. Picariello, G., Iacomino, G., Mamone, G., Ferranti, P., Fierro, O., Gianfrani, C., Di Luccia, A., & Addeo, F. (2013a). Transport across Caco-2 monolayers of peptides arising from in vitro digestion of bovine milk proteins. Food Chemistry, 139, 203-212.
  140. Picariello, G., Mamone, G., Nitride, C., Addeo, F., & Ferranti, P. (2013b). Protein digestomics: Integrated platforms to study food-protein digestion and derived functional and active peptides. TrAC Trends in Analytical Chemistry, 52, 120-134.
  141. Pina, A. S., & Roque, A. C. A. (2009). Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme. Journal of Molecular Recognition, 22, 162- 168.
  142. Pinto, M. S., Léonil, J., Henry, G., Cauty, C., Carvalho, A. F., & Bouhallab, S. (2014). Heating and glycation of β-lactoglobulin and β-casein: Aggregation and in vitro digestion. Food Research International, 55, 70-76.
  143. Pollard, M. J., Hilton, C. K., Li, H., Kaplan, K., Yost, R. A., & Hill, H. H. (2011). Ion mobility spectrometer-field asymmetric ion mobility spectrometer-mass spectrometry. International Journal for Ion Mobility Spectrometry, 14, 15-22.
  144. Pripp, A. H. (2005). Initial proteolysis of milk proteins and its effect on formation of ACE- inhibitory peptides during gastrointestinal proteolysis: a bioinformatic, in silico, approach. European Food Research and Technology, 221, 712-716.
  145. Pripp, A. H. (2007). Docking and virtual screening of ACE inhibitory dipeptides. European Food Research and Technology, 225, 589-592.
  146. Pripp, A. H., & Ardö, Y. (2007). Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides. Food Chemistry, 102, 880-888.
  147. Quirós, A., Hernández-Ledesma, B., Ramos, M., Martín-Álvarez, P. J., & Recio, I. (2012). Short communication: Production of antihypertensive peptide HLPLP by enzymatic hydrolysis: Optimization by response surface methodology. Journal of Dairy Science, 95, 4280- 4285.
  148. Rahaman, T., Vasiljevic, T., & Ramchandran, L. (2017). Digestibility and antigenicity of β- lactoglobulin as affected by heat, pH and applied shear. Food Chemistry, 217, 517-523.
  149. Rajendran, S. R. C. K., Mason, B., & Udenigwe, C. C. (2016). Peptidomics of peptic digest of selected potato tuber proteins: Post-translational modifications and limited cleavage specificity. Journal of Agricultural and Food Chemistry, 64, 2432-2437.
  150. Rinaldi, L., Gauthier, S. F., Britten, M., & Turgeon, S. L. (2014). In vitro gastrointestinal digestion of liquid and semi-liquid dairy matrixes. LWT -Food Science and Technology, 57, 99-105.
  151. Sagardia, I., Iloro, I., Elortza, F., & Bald, C. (2013). Quantitative structure-activity relationship based screening of bioactive peptides identified in ripened cheese. International Dairy Journal, 33, 184-190.
  152. Sánchez-Rivera, L., Ares, I., Miralles, B., Gómez-Ruiz, J. Á., Recio, I., Martínez-Larrañaga, M. R., Anadón, A., & Martínez, M. A. (2014a). Bioavailability and kinetics of the antihypertensive casein-derived peptide HLPLP in rats. Journal of Agricultural and Food Chemistry, 62, 11869-11875.
  153. Sánchez-Rivera, L., Martínez-Maqueda, D., Cruz-Huerta, E., Miralles, B., & Recio, I. (2014b). Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Research International, 63, Part B, 170-181.
  154. Schanbacher, F. L., Talhouk, R. S., Murray, F. A., Gherman, L. I., & Willett, L. B. (1998). Milk- borne bioactive peptides. International Dairy Journal, 8, 393-403.
  155. Schlichtherle-Cerny, H., Affolter, M., & Cerny, C. (2003). Hydrophilic interaction liquid chromatography coupled to electrospray mass spectrometry of small polar compounds in food analysis. Analytical Chemistry, 75, 2349-2354.
  156. Shan, L., Marti, T., Sollid, L. M., & Khosla, C. (2004). Comparative biochemical analysis of three bacterial prolyl endopeptidases: Implications for coeliac sprue. Biochemical Journal, 383, 311-318.
  157. Shigemura, Y., Akaba, S., Kawashima, E., Park, E. Y., Nakamura, Y., & Sato, K. (2011). Identification of a novel food-derived collagen peptide, hydroxyprolyl-glycine, in human peripheral blood by pre-column derivatisation with phenyl isothiocyanate. Food Chemistry, 129, 1019-1024.
  158. Shigemura, Y., Kubomura, D., Sato, Y., & Sato, K. (2014). Dose-dependent changes in the levels of free and peptide forms of hydroxyproline in human plasma after collagen hydrolysate ingestion. Food Chemistry, 159, 328-332.
  159. Shimizu, T., & Hettiarachchy, N. (2012). Food-derived bioactive peptides in the market. In N. S. Hettiarachchy, K. Sato, M. R. Marshall & A. Kannan (Eds.), Food proteins and peptides- Chemistry, functionality, interactions, and commercialization (pp. 375-392). Boca Raton, FL: CRC Press.
  160. Stressler, T., Eisele, T., & Fischer, L. (2013). Simultaneous monitoring of twelve angiotensin I converting enzyme inhibitory peptides during enzymatic β-casein hydrolysis using Lactobacillus peptidases. International Dairy Journal, 30, 96-102.
  161. Stuknytė, M., Cattaneo, S., Masotti, F., & De Noni, I. (2015). Occurrence and fate of ACE- inhibitor peptides in cheeses and in their digestates following in vitro static gastrointestinal digestion. Food Chemistry, 168, 27-33.
  162. Sugihara, F., Inoue, N., Kuwamori, M., & Taniguchi, M. (2012). Quantification of hydroxyprolyl-glycine (Hyp-Gly) in human blood after ingestion of collagen hydrolysate. Journal of Bioscience and Bioengineering, 113, 202-203.
  163. Suleria, H. A. R., Gobe, G., Masci, P., & Osborne, S. A. (2016). Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends in Food Science & Technology, 50, 44-55.
  164. Taga, Y., Kusubata, M., Ogawa-Goto, K., & Hattori, S. (2014). Highly accurate quantification of hydroxyproline-containing peptides in blood using a protease digest of stable isotope- labeled collagen. Journal of Agricultural and Food Chemistry, 62, 12096-12102.
  165. Ten Have, G. A., van der Pijl, P. C., Kies, A. K., & Deutz, N. E. (2015). Enhanced lacto-tri- peptide bio-availability by co-ingestion of macronutrients. PloS one, 10, e0130638.
  166. Tulipano, G., Faggi, L., Nardone, A., Cocchi, D., & Caroli, A. M. (2015). Characterisation of the potential of β-lactoglobulin and α-lactalbumin as sources of bioactive peptides affecting incretin function: in silico and in vitro comparative studies. International Dairy Journal, 48, 66-72.
  167. Udenigwe, C. C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science & Technology, 36, 137-143.
  168. Udenigwe, C. C. (2016). Towards rice bran protein utilization: In silico insight on the role of oryzacystatins in biologically-active peptide production. Food Chemistry, 191, 135-138.
  169. Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science, 77, R11-R24.
  170. Udenigwe, C. C., Gong, M., & Wu, S. (2013). In silico analysis of the large and small subunits of cereal RuBisCO as precursors of cryptic bioactive peptides. Process Biochemistry, 48, 1794-1799.
  171. van der Ven, C., Gruppen, H., de Bont, D. B. A., & Voragen, A. G. J. (2002). Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. International Dairy Journal, 12, 813-820.
  172. van Loon, L. J. C., Kruijshoop, M., Menheere, P. P. C. A., Wagenmakers, A. J. M., Saris, W. H. M., & Keizer, H. A. (2003). Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Clinical Care Education Nutrition, 26, 625-630.
  173. van Platerink, C. J., Janssen, H.-G. M., & Haverkamp, J. (2008). Application of at-line two- dimensional liquid chromatography-mass spectrometry for identification of small hydrophilic angiotensin I-inhibiting peptides in milk hydrolysates. Analytical and Bioanalytical Chemistry, 391, 299-307.
  174. van Platerink, C. J., Janssen, H.-G. M., Horsten, R., & Haverkamp, J. (2006). Quantification of ACE inhibiting peptides in human plasma using high performance liquid chromatography-mass spectrometry. Journal of Chromatography B, 830, 151-157.
  175. Vecchi, B., & Añón, M. C. (2009). ACE inhibitory tetrapeptides from Amaranthus hypochondriacus 11S globulin. Phytochemistry, 70, 864-870.
  176. Velarde-Salcedo, A. J., Barrera-Pacheco, A., Lara-González, S., Montero-Morán, G. M., Díaz- Gois, A., González de Mejia, E., & Barba de la Rosa, A. P. (2013). In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chemistry, 136, 758-764.
  177. Vercruysse, L., Smagghe, G., van der Bent, A., van Amerongen, A., Ongenaert, M., & Van Camp, J. (2009). Critical evaluation of the use of bioinformatics as a theoretical tool to find high-potential sources of ACE inhibitory peptides. Peptides, 30, 575-582.
  178. Vermeirssen, V., van der Bent, A., Van Camp, J., van Amerongen, A., & Verstraete, W. (2004). A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie, 86, 231-239.
  179. Wada, Y., & Lönnerdal, B. (2014). Effects of different industrial heating processes of milk on site-specific protein modifications and their relation to in vitro and in vivo digestibility. Journal of Agricultural and Food Chemistry, 62, 4175-4185.
  180. Walsh, D. J., Bernard, H., Murray, B. A., MacDonald, J., Pentzien, A. K., Wright, G. A., Wal, J. M., Struthers, A. D., Meisel, H., & FitzGerald, R. J. (2004). In vitro generation and stability of the lactokinin β-lactoglobulin fragment (142-148). Journal of Dairy Science, 87, 3845-3857.
  181. Wan, X. S., Lu, L.-J. W., Anderson, K. E., Ware, J. H., & Kennedy, A. R. (2000). Urinary excretion of Bowman-Birk inhibitor in humans after soy consumption as determined by a monoclonal antibody-based immunoassay. Cancer Epidemiology Biomarkers & Prevention, 9, 741-747.
  182. Watanabe, M., Kurihara, J., Suzuki, S., Nagashima, K., Hosono, H., & Itagaki, F. (2015). The influence of dietary peptide inhibitors of angiotensin-converting enzyme on the hypotensive effects of enalapril. Journal of Pharmaceutical Health Care and Sciences, In Press, doi: 10.1186/s40780-40015-40018-40783.
  183. Webb, K. E., Matthews, J. C., & DiRienzo, D. B. (1992). Peptide absorption: A review of current concepts and future perspectives. Journal of Animal Science, 70, 3248-3257.
  184. Yamada, A., Sakurai, T., Ochi, D., Mitsuyama, E., Yamauchi, K., & Abe, F. (2015). Antihypertensive effect of the bovine casein-derived peptide Met-Lys-Pro. Food Chemistry, 172, 441-446.
  185. Yousr, M., & Howell, N. (2015). Antioxidant and ACE inhibitory bioactive peptides purified from egg yolk proteins. International journal of molecular sciences, 16, 29161-29178.
  186. Zhang, R., Chen, J., Jiang, X., Yin, L., & Zhang, X. (2016a). Antioxidant and hypoglycaemic effects of tilapia skin collagen peptide in mice. International Journal of Food Science & Technology, 51, 2157-2163
  187. Zhang, T., Nie, S., Liu, B., Yu, Y., Zhang, Y., & Liu, J. (2015). Activity prediction and molecular mechanism of bovine blood derived angiotensin I-converting enzyme inhibitorypeptides. PLoS ONE, 10, e0119598.
  188. Zhang, Y., Chen, R., Zuo, F., Ma, H., Zhang, Y., & Chen, S. (2016b). Comparison of dipeptidyl peptidase IV-inhibitory activity of peptides from bovine and caprine milk casein by in silico and in vitro analyses. International Dairy Journal, 53, 37-44.
  189. Zhou, P., Yang, C., Ren, Y., Wang, C., & Tian, F. (2013). What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chemistry, 141, 2967-2973.