Strategies for the discovery and identification of food protein-derived biologically active peptides (original) (raw)
Abstract
Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science and Technology. 69: 289-305.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (189)
- Abedin, M., Karim, A., Gan, C., Ghazali, F., Barzideh, Z., Zzaman, W., & Zaidul, I. (2015). Identification of angiotensin I converting enzyme inhibitory and radical scavenging bioactive peptides from sea cucumber (Stichopus vastus) collagen hydrolysates through optimization. International Food Research Journal, 22, 1074-1082.
- Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98, 244-256.
- Arai, S., Yasuoka, A., & Abe, K. (2008). Functional food science and food for specified health use policy in Japan: State of the art. Current Opinion in Lipidology, 19, 69-73.
- Asoodeh, A., Haghighi, L., Chamani, J., Ansari-Ogholbeyk, M. A., Mojallal-Tabatabaei, Z., & Lagzian, M. (2014). Potential angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate: Biochemical characterization and molecular docking study. Journal of Cereal Science, 60, 92-98.
- Aydin, S., Aksoy, A., Aydin, S., Kalayci, M., Yilmaz, M., Kuloglu, T., Citil, C., & Catak, Z. (2014). Today's and yesterday's of pathophysiology: Biochemistry of metabolic syndrome and animal models. Nutrition, 30, 1-9.
- Bhat, Z. F., Kumar, S., & Bhat, H. F. (2015). Bioactive peptides of animal origin: A review. Journal of Food Science and Technology, 52, 5377-5392.
- Blagojevic, V., Chramow, A., Schneider, B. B., Covey, T. R., & Bohme, D. K. (2011). Differential mobility spectrometry of isomeric protonated dipeptides: modifier and field effects on ion mobility and stability. Analytical Chemistry, 83, 3470-3476.
- Bouhallab, S., Morgan, F., Henry, G., Mollé, D., & Léonil, J. (1999). Formation of stable covalent dimer explains the high solubility at pH 4.6 of lactose-β-lactoglobulin conjugates heated near neutral pH. Journal of Agricultural and Food Chemistry, 47, 1489-1494.
- Boutrou, R., Gaudichon, C., Dupont, D., Jardin, J., Airinei, G., Marsset-Baglieri, A., Benamouzig, R., Tomé, D., & Leonil, J. (2013). Sequential release of milk protein- derived bioactive peptides in the jejunum in healthy humans. American Journal of Clinical Nutrition, 97, 1314-1323.
- Boutrou, R., Henry, G., & Sanchez-Rivera, L. (2015). On the trail of milk bioactive peptides in human and animal intestinal tracts during digestion: A review. Dairy Science & Technology, 95, 815-829.
- Butré, C. I., Sforza, S., Gruppen, H., & Wierenga, P. A. (2014). Determination of the influence of substrate concentration on enzyme selectivity using whey protein isolate and Bacillus licheniformis protease. Journal of Agricultural and Food Chemistry, 62, 10230-10239.
- Butré, C. I., Sforza, S., Wierenga, P. A., & Gruppen, H. (2015). Determination of the influence of the pH of hydrolysis on enzyme selectivity of Bacillus licheniformis protease towards whey protein isolate. International Dairy Journal, 44, 44-53.
- Caira, S., Pinto, G., Vitaglione, P., Dal Piaz, F., Ferranti, P., & Addeo, F. (2016). Identification of casein peptides in plasma of subjects after a cheese-enriched diet. Food Research International, 84, 108-112.
- Capriotti, A. L., Cavaliere, C., Piovesana, S., Samperi, R., & Laganà, A. (2016). Recent trends in the analysis of bioactive peptides in milk and dairy products. Analytical and Bioanalytical Chemistry, 408, 2677-2685.
- Carrasco-Castilla, J., Hernández-Álvarez, A. J., Jiménez-Martínez, C., Gutiérrez-López, G. F., & Dávila-Ortiz, G. (2012). Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Engineering Reviews, 4, 224-243.
- Cattaneo, S., Stuknytė, M., Masotti, F., & De Noni, I. (2017). Protein breakdown and release of β-casomorphins during in vitro gastro-intestinal digestion of sterilised model systems of liquid infant formula. Food Chemistry, 217, 476-482.
- Chabance, B., Jollès, P., Izquierdo, C., Mazoyer, E., Francoual, C., Drouet, L., & Fiat, A.-M. (1995). Characterization of an antithrombotic peptide from α-casein in newborn plasma after milk ingestion. British Journal of Nutrition, 73, 583-590.
- Chabance, B., Marteau, P., Rambaud, J., Migliore-Samour, D., Boynard, M., Perrotin, P., Guillet, R., Jolles, P., & Fiat, A. (1998). Casein peptide release and passage to the blood in humans during digestion of milk or yogurt. Biochimie, 80, 155-165.
- Chang, Y.-W., & Alli, I. (2012). In silico assessment: Suggested homology of chickpea (Cicer arietinum L.) legumin and prediction of ACE-inhibitory peptides from chickpea proteins using BLAST and BIOPEP analyses. Food Research International, 49, 477-486.
- Chen, J. C., Wang, J., Zheng, B. D., Pang, J., Chen, L. J., Lin, H. T., & Guo, X. (2015). Simultaneous determination of 8 small antihypertensive peptides with tyrosine at the C- terminal in Laminaria japonica hydrolysates by RP-HPLC method. Journal of Food Processing and Preservation, 40, 492-501.
- Cheung, I. W., Nakayama, S., Hsu, M. N., Samaranayaka, A. G., & Li-Chan, E. C. (2009). Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. Journal of Agricultural and Food Chemistry, 57, 9234-9242.
- Dallas, D. C., Guerrero, A., Parker, E. A., Robinson, R. C., Gan, J., German, J. B., Barile, D., & Lebrilla, C. B. (2015). Current peptidomics: Applications, purification, identification, quantification, and functional analysis. Proteomics, 15, 1026-1038.
- Darewicz, M., Borawska, J., & Pliszka, M. (2016). Carp proteins as a source of bioactive peptides-an in silico approach. Czech Journal of Food Science, 34, 111-117.
- de Castro, R. J. S., & Sato, H. H. (2015). Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, 74, 185-198.
- de Leeuw, P. W., Van der Zander, K., Kroon, A. A., Rennenberg, R. M., & Koning, M. M. (2009). Dose-dependent lowering of blood pressure by dairy peptides in mildly hypertensive subjects. Blood Pressure, 18, 44-50.
- De Noni, I., FitzGerald, R. J., Korhonen, H. J., Le Roux, Y., Livesey, C. T., Thorsdottir, I., Tomé, D., & Witkamp, R. (2009). Review of the potential health impact of β- casomorphins and related peptides. EFSA Sci Rep, 231, 1-107.
- De Noni, I., Stuknytė, M., & Cattaneo, S. (2015). Identification of β-casomorphins 3 to 7 in cheeses and in their in vitro gastrointestinal digestates. LWT -Food Science and Technology, 63, 550-555.
- del Mar Contreras, M., Hernández-Ledesma, B., Amigo, L., Martín-Álvarez, P. J., & Recio, I. (2011). Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: optimization by response surface methodology. LWT-Food Science and Technology, 44, 9-15.
- Dia, V. P., Torres, S., De Lumen, B. O., Erdman Jr, J. W., & De Mejia, E. G. (2009). Presence of lunasin in plasma of men after soy protein consumption. Journal of Agricultural and Food Chemistry, 57, 1260-1266.
- Dupont, D., Mandalari, G., Mollé, D., Jardin, J., Rolet-Répécaud, O., Duboz, G., Léonil, J., Mills, C. E., & Mackie, A. R. (2010). Food processing increases casein resistance to simulated infant digestion. Molecular Nutrition & Food Research, 54, 1677-1689.
- Dziuba, B., & Dziuba, M. (2014). Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects. Acta Scientiarum Polonorum Technologia Alimentaria, 13, 5-26.
- Dziuba, J., Iwaniak, A., & Minkiewicz, P. (2003). Computer-aided characteristics of proteins as potential precursors of bioactive peptides. Polimery, 48, 50-53.
- Dziuba, M., & Darewicz, M. (2007). Food proteins as precursors of bioactive peptides- classification into families. Food Science and Technology International, 13, 393-404.
- EFSA. (2011). Scientific and technical guidance for the preparation and presentation of an application for authorisation of a health claim EFSA Journal, 9, 2170-2205.
- EFSA. (2016). General scientific guidance for stakeholders on health claim applications. EFSA Journal, 14, 4367-4402.
- Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., Barberá, R., Brodkorb, A., Cattenoz, T., Clemente, A., Comi, I., Dupont, D., Garcia-Llatas, G., Lagarda, M. J., Le Feunteun, S., JanssenDuijghuijsen, L., Karakaya, S., Lesmes, U., Mackie, A. R., Martins, C., Meynier, A., Miralles, B., Murray, B. S., Pihlanto, A., Picariello, G., Santos, C. N., Simsek, S., Recio, I., Rigby, N., Rioux, L.-E., Stoffers, H., Tavares, A., Tavares, L., Turgeon, S., Ulleberg, E. K., Vegarud, G. E., Vergères, G., & Portmann, R. (2016). The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 88, Part B, 217-225.
- Eisele, T., Stressler, T., Kranz, B., & Fischer, L. (2012). Quantification of dabsylated di-and tri- peptides in fermented milk. Food Chemistry, 135, 2808-2813.
- Fekete, A. A., Givens, D. I., & Lovegrove, J. A. (2013). The impact of milk proteins and peptides on blood pressure and vascular function: A review of evidence from human intervention studies. Nutrition Research Reviews, 26, 177-190.
- Fernández-Musoles, R., Castelló-Ruiz, M., Arce, C., Manzanares, P., Ivorra, M. D., & Salom, J. B. (2014). Antihypertensive mechanism of lactoferrin-derived peptides: Angiotensin receptor blocking effect. Journal of Agricultural and Food Chemistry, 62, 173-181.
- Foltz, M., Meynen, E. E., Bianco, V., van Platerink, C., Koning, T. M. M. G., & Kloek, J. (2007). Angiotensin converting enzyme inhibitory peptides from a lactotripeptide- enriched milk beverage are absorbed intact into the circulation. Journal of Nutrition, 137, 953-958.
- Foltz, M., Van Buren, L., Klaffke, W., & Duchateau, G. S. (2009). Modeling of the relationship between dipeptide structure and dipeptide stability, permeability, and ACE inhibitory activity. Journal of Food Science, 74, H243-H251.
- Foltz, M., van der Pijl, P. C., & Duchateau, G. S. M. J. E. (2010). Current in vitro testing of bioactive peptides is not valuable. The Journal of Nutrition, 140, 117-118.
- Fu, Y., Wu, W., Zhu, M., & Xiao, Z. (2015). In silico assessment of the potential of patatin as a precursor of bioactive peptides. Journal of Food Biochemistry, 40, 366-370.
- Fu, Y., Young, J. F., Løkke, M. M., Lametsch, R., Aluko, R. E., & Therkildsen, M. (2016). Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. Journal of Functional Foods, 24, 196-206.
- Gaudel, C., Nongonierma, A. B., Maher, S., Flynn, S., Murray, B. A., Kelly, P. M., Krause, M., FitzGerald, R. J., & Newsholme, P. (2013). A whey protein hydrolysate promotes insulinotropic activity in a clonal pancreatic cell line and enhances glycemic function in ob/ob mice. Journal of Nutrition, 143, 1109-1114
- Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J., & Aluko, R. E. (2014). Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 6, 384-394.
- Giroux, H. J., Robitaille, G., & Britten, M. (2016). Controlled release of casein-derived peptides in the gastrointestinal environment by encapsulation in water-in-oil-in-water double emulsions. LWT-Food Science and Technology, 69, 225-232.
- Gleeson, J. P., Heade, J., Ryan, S. M., & Brayden, D. J. (2015). Stability, toxicity and intestinal permeation enhancement of two food-derived antihypertensive tripeptides, Ile-Pro-Pro and Leu-Lys-Pro. Peptides, 71, 1-7.
- Gleeson, J. P., Ryan, S. M., & Brayden, D. J. (2016). Oral delivery strategies for nutraceuticals: Delivery vehicles and absorption enhancers. Trends in Food Science & Technology, 53, 90-101.
- Groleau, P. E., Morin, P., Gauthier, S. F., & Pouliot, Y. (2003). Effect of physicochemical conditions on peptide-peptide interactions in a tryptic hydrolysate of β-lactoglobulin and identification of aggregating peptides. Journal of Agricultural and Food Chemistry, 51, 4370-4375.
- Gu, R.-Z., Li, C.-Y., Liu, W.-Y., Yi, W.-X., & Cai, M.-Y. (2011a). Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Research International, 44, 1536-1540.
- Gu, Y., Majumder, K., & Wu, J. (2011b). QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Research International, 44, 2465-2474.
- Halim, N. R. A., Yusof, H. M., & Sarbon, N. M. (2016). Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends in Food Science & Technology, 51, 24-33.
- Harscoat-Schiavo, C., Nioi, C., Ronat-Heit, E., Paris, C., Vanderesse, R., Fournier, F., & Marc, I. (2012). Hydrophilic properties as a new contribution for computer-aided identification of short peptides in complex mixtures. Analytical and Bioanalytical Chemistry, 403, 1939- 1949.
- Havenaar, R., de Jong, A., Koenen, M. E., van Bilsen, J., Janssen, A. M., Labij, E., & Westerbeek, H. J. M. (2013). Digestibility of transglutaminase cross-linked caseinate versus native caseinate in an in vitro multicompartmental model simulating young child and adult gastrointestinal conditions. Journal of Agricultural and Food Chemistry, 61, 7636-7644.
- He, R., Aluko, R. E., & Ju, X.-R. (2014). Evaluating molecular mechanism of hypotensive peptides interactions with renin and angiotensin converting enzyme. PLoS ONE, 9, e91051. Hernández-Ledesma, B., García-Nebot, M. J., Fernández-Tomé, S., Amigo, L., & Recio, I. (2014). Dairy protein hydrolysates: Peptides for health benefits. International Dairy Journal, 38, 82-100.
- Hong, S.-M., Tanaka, M., Yoshii, S., Mine, Y., & Matsui, T. (2013). Enhanced visualization of small peptides absorbed in rat small intestine by phytic-acid-aided matrix-assisted Laser desorption/ionization-imaging mass spectrometry. Analytical Chemistry, 85, 10033- 10039.
- Hsieh, C.-C., Hernández-Ledesma, B., Fernández-Tomé, S., Weinborn, V., Barile, D., & de Moura Bell, J. M. L. N. (2015). Milk proteins, peptides, and oligosaccharides: Effects against the 21st century disorders. BioMed Research International, In press, doi: 10.1155/2015/146840, 146840.
- Hsieh, C.-H., Wang, T.-Y., Hung, C.-C., Jao, C.-L., Hsieh, Y.-L., Wu, S.-X., & Hsu, K.-C. (2016). In silico, in vitro and in vivo analyses of dipeptidyl peptidase IV inhibitory activity and the antidiabetic effect of sodium caseinate hydrolysate. Food & Function, 7, 1122-1128.
- Huang, B.-B., Lin, H.-C., & Chang, Y.-W. (2015). Analysis of proteins and potential bioactive peptides from tilapia (Oreochromis spp.) processing co-products using proteomic techniques coupled with BIOPEP database. Journal of Functional Foods, 19, Part A, 629-640.
- Ichikawa, S., Morifuji, M., Ohara, H., Matsumoto, H., Takeuchi, Y., & Sato, K. (2010). Hydroxyproline-containing dipeptides and tripeptides quantified at high concentration in human blood after oral administration of gelatin hydrolysate. International Journal of Food Sciences and Nutrition, 61, 52-60.
- Iwaniak, A., Minkiewicz, P., Darewicz, M., Protasiewicz, M., & Mogut, D. (2015). Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. Journal of Functional Foods, 16, 334-351.
- Jao, C.-L., Huang, S.-L., & Hsu, K.-C. (2012). Angiotensin I-converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. Biomedicine, 2, 130-136.
- Jauhiainen, T., Ronnback, M., Vapaatalo, H., Wuolle, K., Kautiainen, H., Groop, P. H., & Korpela, R. (2010). Long-term intervention with Lactobacillus helveticus fermented milk reduces augmentation index in hypertensive subjects. European Journal of Clinical Nutrition, 64, 424-431.
- Jonker, J. T., Wijngaarden, M. A., Kloek, J., Groeneveld, Y., Gerhardt, C., Brand, R., Kies, A. K., Romijn, J. A., & Smit, J. W. A. (2011). Effects of low doses of casein hydrolysate on post-challenge glucose and insulin levels. European Journal of Internal Medicine, 22, 245-248.
- Kaiser, S., Martin, M., Lunow, D., Rudolph, S., Mertten, S., Möckel, U., Deußen, A., & Henle, T. (2016). Tryptophan-containing dipeptides are bioavailable and inhibit plasma human angiotensin-converting enzyme in vivo. International Dairy Journal, 52, 107-114.
- Kalyankar, P., Zhu, Y., O'Cuinn, G., & FitzGerald, R. J. (2013). Investigation of the substrate specificity of glutamyl endopeptidase using purified bovine β-casein and synthetic peptides. Journal of Agricultural and Food Chemistry, 61, 3193-3204.
- Kaszycki, J. L., Bowman, A. P., & Shvartsburg, A. A. (2016). Ion mobility separation of peptide isotopomers. Journal of the American Society for Mass Spectrometry, 27, 795-799.
- Keska, P., & Stadnik, J. (2016). Porcine myofibrillar proteins as potential precursors of bioactive peptides -an in silico study. Food & Function, 7, 2878-2885.
- Lacroix, I. M., & Li-Chan, E. C. (2015). Comparison of the susceptibility of porcine and human dipeptidyl-peptidase IV to inhibition by protein-derived peptides. Peptides, 69, 19-25.
- Lacroix, I. M., & Li-Chan, E. C. (2016). Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation-Current knowledge and future research considerations. Trends in Food Science & Technology, 54, 1-16.
- Lacroix, I. M., Meng, G., Cheung, I. W., & Li-Chan, E. C. (2016). Do whey protein-derived peptides have dual dipeptidyl-peptidase IV and angiotensin I-converting enzyme inhibitory activities? Journal of Functional Foods, 21, 87-96.
- Lacroix, I. M. E., & Li-Chan, E. C. Y. (2012). Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. Journal of Functional Foods, 4, 403-422.
- Lafarga, T., O'Connor, P., & Hayes, M. (2015). In silico methods to identify meat-derived prolyl endopeptidase inhibitors. Food Chemistry, 175, 337-343.
- Lahrichi, S. L., Affolter, M., Zolezzi, I. S., & Panchaud, A. (2013). Food Peptidomics: Large scale analysis of small bioactive peptides -A pilot study. Journal of Proteomics, 88, 83- 91.
- Lalor, F., & Wall, P. G. (2011). Health claims regulations: Comparison between USA, Japan and European Union. British Food Journal, 113, 298-313.
- Le Maux, S., Nongonierma, A. B., & FitzGerald, R. J. (2015a). Improved short peptide identification using HILIC-MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chemistry, 175, 847-854.
- Le Maux, S., Nongonierma, A. B., Murray, B., Kelly, P. M., & FitzGerald, R. J. (2015b). Identification of short peptide sequences in the nanofiltration permeate of a bioactive whey protein hydrolysate. Food Research International, 77, 534-539.
- Ledoux, N., Mahe, S., Dubarry, M., Bourras, M., Benamouzig, R., & Tome, D. (1999). Intraluminal immunoreactive caseinomacropeptide after milk protein ingestion in humans. Food/Nahrung, 43, 196-200.
- Lee, H. S., & Lee, K. J. (2000). Cathepsin B inhibitory peptides derived from β-casein. Peptides, 21, 807-809.
- Lemes, A. C., Sala, L., Ores, J. d. C., Braga, A. R. C., Egea, M. B., & Fernandes, K. F. (2016). A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Sciences, 17, 950.
- Li-Chan, E. C. (2015). Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1, 28-37.
- Li, P., Jia, J., Fang, M., Zhang, L., Guo, M., Xie, J., Xia, Y., Zhou, L., & Wei, D. (2014). In vitro and in vivo ACE inhibitory of pistachio hydrolysates and in silico mechanism of identified peptide binding with ACE. Process Biochemistry, 49, 898-904.
- Li, Z., Paulson, A. T., & Gill, T. A. (2015). Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. Journal of Functional Foods, 19, Part A, 733-743.
- Maestri, E., Marmiroli, M., & Marmiroli, N. (2016). Bioactive peptides in plant-derived foodstuffs. Journal of Proteomics, 147, 140-155.
- Majumder, K., Liang, G., Chen, Y., Guan, L., Davidge, S. T., & Wu, J. (2015). Egg ovotransferrin-derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats. Molecular Nutrition & Food Research, 59, 1735-1744.
- Majumder, K., & Wu, J. (2009). Angiotensin I converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of cooked eggs. Journal of Agricultural and Food Chemistry, 57, 471-477.
- Majumder, K., & Wu, J. (2010). A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Research International, 43, 1371-1378.
- Maldonado-Valderrama, J., Wilde, P. J., Mulholland, F., & Morris, V. J. (2012). Protein unfolding at fluid interfaces and its effect on proteolysis in the stomach. Soft Matter, 8, 4402-4414.
- Manders, R. J., Koopman, R., Sluijsmans, W. E., van den Berg, R., Verbeek, K., Saris, W. H., Wagenmakers, A. J., & van Loon, L. J. (2006a). Co-ingestion of a protein hydrolysate with or without additional leucine effectively reduces postprandial blood glucose excursions in Type 2 diabetic men. Journal of Nutrition, 136, 1294-1299.
- Manders, R. J., Wagenmakers, A. J., Koopman, R., Zorenc, A. H., Menheere, P. P., Schaper, N. C., Saris, W. H., & van Loon, L. J. (2005). Co-ingestion of a protein hydrolysate and amino acid mixture with carbohydrate improves plasma glucose disposal in patients with type 2 diabetes. The American Journal of Clinical Nutrition, 82, 76-83.
- Manders, R. J. F., Praet, S. F. E., Meex, R. C. R., Koopman, R., de Roos, A. L., Wagenmakers, A. J. M., Saris, W. H. M., & van Loon, L. J. C. (2006b). Protein hydrolysate/leucine ingestion reduces the prevalence of hyperglycemia in Type 2 diabetic patients. Diabetes Care, 29, 2721-2722.
- Manders, R. J. F., Praet, S. F. E., Vikstrom, M. H., Saris, W. H. M., & van Loon, L. J. C. (2007). Protein hydrolysate co-ingestion does not modulate 24 h glycemic control in long- standing type 2 diabetes patients. European Journal of Clinical Nutrition, 63, 121-126.
- Martínez-Alvarez, O., Chamorro, S., & Brenes, A. (2015). Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Research International, 73, 204-212.
- Mat, D. J., Le Feunteun, S., Michon, C., & Souchon, I. (2016). In vitro digestion of foods using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids. Food Research International, 88, 226-233.
- Matsui, T., Tamaya, K., Seki, E., Osajima, K., Matsumoto, K., & Kawasaki, T. (2002). Val-Tyr as a natural antihypertensive dipeptide can be absorbed into the human circulatory blood system. Clinical and Experimental Pharmacology and Physiology, 29, 204-208.
- Meisel, H., Fairweather-Tait, S., FitzGerald, R. J., Hartmann, R., Lane, C. N., McDonagh, D., Teucher, B., & Wal, J. M. (2003). Detection of caseinophosphopeptides in the distal ileostomy fluid of human subjects. British Journal of Nutrition, 89, 351-358.
- Mercier, A., Gauthier, S. F., & Fliss, I. (2004). Immunomodulating effects of whey proteins and their enzymatic digests. International Dairy Journal, 14, 175-183.
- Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., & Dupont, D. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food & Function, 5, 1113-1124.
- Miner-Williams, W. M., Stevens, B. R., & Moughan, P. J. (2014). Are intact peptides absorbed from the healthy gut in the adult human? Nutrition Research Reviews, 27, 308-329.
- Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M., & Darewicz, M. (2008). BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC International, 91, 965-980.
- Minkiewicz, P., Dziuba, J., & Michalska, J. (2011). Bovine meat proteins as potential precursors of biologically active peptides -a computational study based on the BIOPEP database. Food Science and Technology International, 17, 39-45.
- Mizuno, S., Matsuura, K., Gotou, T., Nishimura, S., Kajimoto, O., Yabune, M., Kajimoto, Y., & Yamamoto, N. (2005). Antihypertensive effect of casein hydrolysate in a placebo- controlled study in subjects with high-normal blood pressure and mild hypertension. British Journal of Nutrition, 94, 84-91.
- Mohan, A., Rajendran, S. R., He, Q. S., Bazinet, L., & Udenigwe, C. C. (2015). Encapsulation of food protein hydrolysates and peptides: A review. RSC Advances, 5, 79270-79278.
- Monogioudi, E., Faccio, G., Lille, M., Poutanen, K., Buchert, J., & Mattinen, M.-L. (2011). Effect of enzymatic cross-linking of β-casein on proteolysis by pepsin. Food Hydrocolloids, 25, 71-81.
- Morifuji, M., Ishizaka, M., Baba, S., Fukuda, K., Matsumoto, H., Koga, J., Kanegae, M., & Higuchi, M. (2010). Comparison of different sources and degrees of hydrolysis of dietary protein: Effect on plasma amino acids, dipeptides, and insulin responses in human subjects. Journal of Agricultural and Food Chemistry, 58, 8788-8797.
- Morifuji, M., Koga, J., Kawanaka, K., & Higuchi, M. (2009). Branched-chain amino acid- containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake rate in L6 myotubes and isolated skeletal muscles. Journal of Nutritional Science and Vitaminology, 55, 81-86.
- Mukhopadhya, A., Noronha, N., Bahar, B., Ryan, M. T., Murray, B., Kelly, P., O'Loughlin, I., O'doherty, J. V., & Sweeney, T. (2015). The anti-inflammatory potential of a moderately hydrolysed casein and its 5 kDa fraction in in vitro and ex vivo models of the gastrointestinal tract. Food & Function, 6, 612-621.
- Murray, B. A., Walsh, D. J., & FitzGerald, R. J. (2004). Modification of the furanacryloyl-L- phenylalanylglycylglycine assay for determination of angiotensin-I-converting enzyme inhibitory activity. Journal of Biochemical and Biophysical Methods, 59, 127-137.
- Naik, L., Mann, B., Bajaj, R., Sangwan, R., & Sharma, R. (2013). Process optimization for the production of bio-functional whey protein hydrolysates: adopting response surface methodology. International Journal of Peptide Research and Therapeutics, 19, 231-237.
- Nelson, R. W., & Reusch, C. E. (2014). Animal models of disease: Classification and etiology of diabetes in dogs and cats. Journal of Endocrinology, 222, T1-T9.
- Nikolaev, I., Sforza, S., Lambertini, F., Ismailova, D. Y., Khotchenkov, V., Volik, V., Dossena, A., Popov, V., & Koroleva, O. (2016). Biocatalytic conversion of poultry processing leftovers: Optimization of hydrolytic conditions and peptide hydrolysate characterization. Food Chemistry, 197, 611-621.
- Niu, Z., Conejos-Sánchez, I., Griffin, B. T., O'Driscoll, C. M., & Alonso, M. J. (2016). Lipid- based nanocarriers for oral peptide delivery. Advanced Drug Delivery Reviews, 106, Part B, 337-354.
- Nongonierma, A. B., & FitzGerald, R. J. (2011). Enzymes exogenous to milk in dairy technology | Proteinases. In J. W. Fuquay (Ed.), Encyclopedia of Dairy Sciences (2 ed., pp. 289-296). San Diego: Academic Press.
- Nongonierma, A. B., & FitzGerald, R. J. (2012a). Biofunctional properties of caseinophosphopeptides in the oral cavity. Caries Research, 46, 234-267.
- Nongonierma, A. B., & FitzGerald, R. J. (2012b). Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase. Peptides, 37, 263-272.
- Nongonierma, A. B., & FitzGerald, R. J. (2013a). Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk-derived dipeptides and hydrolysates. Peptides, 39, 157- 163.
- Nongonierma, A. B., & FitzGerald, R. J. (2013b). Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: Influence of fractionation, stability to simulated gastrointestinal digestion and food-drug interaction. International Dairy Journal, 32, 33- 39.
- Nongonierma, A. B., & FitzGerald, R. J. (2014). An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 165, 489-498.
- Nongonierma, A. B., & FitzGerald, R. J. (2015a). Bioactive properties of milk proteins in humans: A review. Peptides, 73, 20-34.
- Nongonierma, A. B., & FitzGerald, R. J. (2015b). The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A review. Journal of Functional Foods, 640, 640-656.
- Nongonierma, A. B., & FitzGerald, R. J. (2015c). Utilisation of the isobole methodology to study dietary peptide-drug and peptide-peptide interactive effects on dipeptidyl peptidase IV (DPP-IV) inhibition. Food & Function, 6, 312-319.
- Nongonierma, A. B., & FitzGerald, R. J. (2016a). Learnings from quantitative structure activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: A review. RSC Advances, 6, 75400-75413.
- Nongonierma, A. B., & FitzGerald, R. J. (2016b). Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science & Technology, 50, 26-43.
- Nongonierma, A. B., & FitzGerald, R. J. (2016c). Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides, 79, 1-7.
- Nongonierma, A. B., Le Maux, S., Esteveny, C., & FitzGerald, R. J. (2017). Response surface methodology (RSM) applied to the generation of casein hydrolysates with antioxidant and dipeptidyl peptidase IV (DPP-IV) inhibitory properties. Journal of the Science of Food and Agriculture, 97, 1093-1101.
- Nongonierma, A. B., Le Maux, S., Hamayon, J., & FitzGerald, R. J. (2016a). Strategies for the release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in an enzymatic hydrolyzate of α-lactalbumin. Food & Function, 7, 3437-3443.
- Nongonierma, A. B., Mooney, C., Shields, D. C., & FitzGerald, R. J. (2013). Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chemistry, 141, 644-653.
- Nongonierma, A. B., Mooney, C., Shields, D. C., & FitzGerald, R. J. (2014). In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP- IV) inhibitors. Peptides, 57, 43-51.
- Nongonierma, A. B., O'Keeffe, M. B., & FitzGerald, R. J. (2016b). Milk protein hydrolysates and bioactive peptides. In P. L. H. McSweeney & J. A. O'Mahony (Eds.), Advanced Dairy Chemistry (4 ed., pp. 417-482). New-York, USA: Springer-Verlag.
- Norris, R., Casey, F., FitzGerald, R. J., Shields, D. C., & Mooney, C. (2012). Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chemistry, 133, 1349-1354.
- O'Neill, S., & O'Driscoll, L. (2015). Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obesity Reviews, 16, 1-12.
- O'Keeffe, M. B., & FitzGerald, R. J. (2015). Identification of short peptide sequences in complex milk protein hydrolysates. Food Chemistry, 184, 140-146.
- Pampanin, D. M., Larssen, E., Provan, F., Sivertsvik, M., Ruoff, P., & Sydnes, M. O. (2012). Detection of small bioactive peptides from Atlantic herring (Clupea harengus L.). Peptides, 34, 423-426.
- Pan, D., Cao, J., Guo, H., & Zhao, B. (2012). Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate. Food Chemistry, 130, 121-126.
- Panchaud, A., Affolter, M., & Kussmann, M. (2012). Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects. Journal of Proteomics, 75, 3546-3559.
- Picariello, G., Ferranti, P., & Addeo, F. (2016). Use of brush border membrane vesicles to simulate the human intestinal digestion. Food Research International, 88, Part B, 327- 335.
- Picariello, G., Ferranti, P., Fierro, O., Mamone, G., Caira, S., Di Luccia, A., Monica, S., & Addeo, F. (2010). Peptides surviving the simulated gastrointestinal digestion of milk proteins: Biological and toxicological implications. Journal of Chromatography B, 878, 295-308.
- Picariello, G., Iacomino, G., Mamone, G., Ferranti, P., Fierro, O., Gianfrani, C., Di Luccia, A., & Addeo, F. (2013a). Transport across Caco-2 monolayers of peptides arising from in vitro digestion of bovine milk proteins. Food Chemistry, 139, 203-212.
- Picariello, G., Mamone, G., Nitride, C., Addeo, F., & Ferranti, P. (2013b). Protein digestomics: Integrated platforms to study food-protein digestion and derived functional and active peptides. TrAC Trends in Analytical Chemistry, 52, 120-134.
- Pina, A. S., & Roque, A. C. A. (2009). Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme. Journal of Molecular Recognition, 22, 162- 168.
- Pinto, M. S., Léonil, J., Henry, G., Cauty, C., Carvalho, A. F., & Bouhallab, S. (2014). Heating and glycation of β-lactoglobulin and β-casein: Aggregation and in vitro digestion. Food Research International, 55, 70-76.
- Pollard, M. J., Hilton, C. K., Li, H., Kaplan, K., Yost, R. A., & Hill, H. H. (2011). Ion mobility spectrometer-field asymmetric ion mobility spectrometer-mass spectrometry. International Journal for Ion Mobility Spectrometry, 14, 15-22.
- Pripp, A. H. (2005). Initial proteolysis of milk proteins and its effect on formation of ACE- inhibitory peptides during gastrointestinal proteolysis: a bioinformatic, in silico, approach. European Food Research and Technology, 221, 712-716.
- Pripp, A. H. (2007). Docking and virtual screening of ACE inhibitory dipeptides. European Food Research and Technology, 225, 589-592.
- Pripp, A. H., & Ardö, Y. (2007). Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides. Food Chemistry, 102, 880-888.
- Quirós, A., Hernández-Ledesma, B., Ramos, M., Martín-Álvarez, P. J., & Recio, I. (2012). Short communication: Production of antihypertensive peptide HLPLP by enzymatic hydrolysis: Optimization by response surface methodology. Journal of Dairy Science, 95, 4280- 4285.
- Rahaman, T., Vasiljevic, T., & Ramchandran, L. (2017). Digestibility and antigenicity of β- lactoglobulin as affected by heat, pH and applied shear. Food Chemistry, 217, 517-523.
- Rajendran, S. R. C. K., Mason, B., & Udenigwe, C. C. (2016). Peptidomics of peptic digest of selected potato tuber proteins: Post-translational modifications and limited cleavage specificity. Journal of Agricultural and Food Chemistry, 64, 2432-2437.
- Rinaldi, L., Gauthier, S. F., Britten, M., & Turgeon, S. L. (2014). In vitro gastrointestinal digestion of liquid and semi-liquid dairy matrixes. LWT -Food Science and Technology, 57, 99-105.
- Sagardia, I., Iloro, I., Elortza, F., & Bald, C. (2013). Quantitative structure-activity relationship based screening of bioactive peptides identified in ripened cheese. International Dairy Journal, 33, 184-190.
- Sánchez-Rivera, L., Ares, I., Miralles, B., Gómez-Ruiz, J. Á., Recio, I., Martínez-Larrañaga, M. R., Anadón, A., & Martínez, M. A. (2014a). Bioavailability and kinetics of the antihypertensive casein-derived peptide HLPLP in rats. Journal of Agricultural and Food Chemistry, 62, 11869-11875.
- Sánchez-Rivera, L., Martínez-Maqueda, D., Cruz-Huerta, E., Miralles, B., & Recio, I. (2014b). Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Research International, 63, Part B, 170-181.
- Schanbacher, F. L., Talhouk, R. S., Murray, F. A., Gherman, L. I., & Willett, L. B. (1998). Milk- borne bioactive peptides. International Dairy Journal, 8, 393-403.
- Schlichtherle-Cerny, H., Affolter, M., & Cerny, C. (2003). Hydrophilic interaction liquid chromatography coupled to electrospray mass spectrometry of small polar compounds in food analysis. Analytical Chemistry, 75, 2349-2354.
- Shan, L., Marti, T., Sollid, L. M., & Khosla, C. (2004). Comparative biochemical analysis of three bacterial prolyl endopeptidases: Implications for coeliac sprue. Biochemical Journal, 383, 311-318.
- Shigemura, Y., Akaba, S., Kawashima, E., Park, E. Y., Nakamura, Y., & Sato, K. (2011). Identification of a novel food-derived collagen peptide, hydroxyprolyl-glycine, in human peripheral blood by pre-column derivatisation with phenyl isothiocyanate. Food Chemistry, 129, 1019-1024.
- Shigemura, Y., Kubomura, D., Sato, Y., & Sato, K. (2014). Dose-dependent changes in the levels of free and peptide forms of hydroxyproline in human plasma after collagen hydrolysate ingestion. Food Chemistry, 159, 328-332.
- Shimizu, T., & Hettiarachchy, N. (2012). Food-derived bioactive peptides in the market. In N. S. Hettiarachchy, K. Sato, M. R. Marshall & A. Kannan (Eds.), Food proteins and peptides- Chemistry, functionality, interactions, and commercialization (pp. 375-392). Boca Raton, FL: CRC Press.
- Stressler, T., Eisele, T., & Fischer, L. (2013). Simultaneous monitoring of twelve angiotensin I converting enzyme inhibitory peptides during enzymatic β-casein hydrolysis using Lactobacillus peptidases. International Dairy Journal, 30, 96-102.
- Stuknytė, M., Cattaneo, S., Masotti, F., & De Noni, I. (2015). Occurrence and fate of ACE- inhibitor peptides in cheeses and in their digestates following in vitro static gastrointestinal digestion. Food Chemistry, 168, 27-33.
- Sugihara, F., Inoue, N., Kuwamori, M., & Taniguchi, M. (2012). Quantification of hydroxyprolyl-glycine (Hyp-Gly) in human blood after ingestion of collagen hydrolysate. Journal of Bioscience and Bioengineering, 113, 202-203.
- Suleria, H. A. R., Gobe, G., Masci, P., & Osborne, S. A. (2016). Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends in Food Science & Technology, 50, 44-55.
- Taga, Y., Kusubata, M., Ogawa-Goto, K., & Hattori, S. (2014). Highly accurate quantification of hydroxyproline-containing peptides in blood using a protease digest of stable isotope- labeled collagen. Journal of Agricultural and Food Chemistry, 62, 12096-12102.
- Ten Have, G. A., van der Pijl, P. C., Kies, A. K., & Deutz, N. E. (2015). Enhanced lacto-tri- peptide bio-availability by co-ingestion of macronutrients. PloS one, 10, e0130638.
- Tulipano, G., Faggi, L., Nardone, A., Cocchi, D., & Caroli, A. M. (2015). Characterisation of the potential of β-lactoglobulin and α-lactalbumin as sources of bioactive peptides affecting incretin function: in silico and in vitro comparative studies. International Dairy Journal, 48, 66-72.
- Udenigwe, C. C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science & Technology, 36, 137-143.
- Udenigwe, C. C. (2016). Towards rice bran protein utilization: In silico insight on the role of oryzacystatins in biologically-active peptide production. Food Chemistry, 191, 135-138.
- Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science, 77, R11-R24.
- Udenigwe, C. C., Gong, M., & Wu, S. (2013). In silico analysis of the large and small subunits of cereal RuBisCO as precursors of cryptic bioactive peptides. Process Biochemistry, 48, 1794-1799.
- van der Ven, C., Gruppen, H., de Bont, D. B. A., & Voragen, A. G. J. (2002). Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. International Dairy Journal, 12, 813-820.
- van Loon, L. J. C., Kruijshoop, M., Menheere, P. P. C. A., Wagenmakers, A. J. M., Saris, W. H. M., & Keizer, H. A. (2003). Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Clinical Care Education Nutrition, 26, 625-630.
- van Platerink, C. J., Janssen, H.-G. M., & Haverkamp, J. (2008). Application of at-line two- dimensional liquid chromatography-mass spectrometry for identification of small hydrophilic angiotensin I-inhibiting peptides in milk hydrolysates. Analytical and Bioanalytical Chemistry, 391, 299-307.
- van Platerink, C. J., Janssen, H.-G. M., Horsten, R., & Haverkamp, J. (2006). Quantification of ACE inhibiting peptides in human plasma using high performance liquid chromatography-mass spectrometry. Journal of Chromatography B, 830, 151-157.
- Vecchi, B., & Añón, M. C. (2009). ACE inhibitory tetrapeptides from Amaranthus hypochondriacus 11S globulin. Phytochemistry, 70, 864-870.
- Velarde-Salcedo, A. J., Barrera-Pacheco, A., Lara-González, S., Montero-Morán, G. M., Díaz- Gois, A., González de Mejia, E., & Barba de la Rosa, A. P. (2013). In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chemistry, 136, 758-764.
- Vercruysse, L., Smagghe, G., van der Bent, A., van Amerongen, A., Ongenaert, M., & Van Camp, J. (2009). Critical evaluation of the use of bioinformatics as a theoretical tool to find high-potential sources of ACE inhibitory peptides. Peptides, 30, 575-582.
- Vermeirssen, V., van der Bent, A., Van Camp, J., van Amerongen, A., & Verstraete, W. (2004). A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie, 86, 231-239.
- Wada, Y., & Lönnerdal, B. (2014). Effects of different industrial heating processes of milk on site-specific protein modifications and their relation to in vitro and in vivo digestibility. Journal of Agricultural and Food Chemistry, 62, 4175-4185.
- Walsh, D. J., Bernard, H., Murray, B. A., MacDonald, J., Pentzien, A. K., Wright, G. A., Wal, J. M., Struthers, A. D., Meisel, H., & FitzGerald, R. J. (2004). In vitro generation and stability of the lactokinin β-lactoglobulin fragment (142-148). Journal of Dairy Science, 87, 3845-3857.
- Wan, X. S., Lu, L.-J. W., Anderson, K. E., Ware, J. H., & Kennedy, A. R. (2000). Urinary excretion of Bowman-Birk inhibitor in humans after soy consumption as determined by a monoclonal antibody-based immunoassay. Cancer Epidemiology Biomarkers & Prevention, 9, 741-747.
- Watanabe, M., Kurihara, J., Suzuki, S., Nagashima, K., Hosono, H., & Itagaki, F. (2015). The influence of dietary peptide inhibitors of angiotensin-converting enzyme on the hypotensive effects of enalapril. Journal of Pharmaceutical Health Care and Sciences, In Press, doi: 10.1186/s40780-40015-40018-40783.
- Webb, K. E., Matthews, J. C., & DiRienzo, D. B. (1992). Peptide absorption: A review of current concepts and future perspectives. Journal of Animal Science, 70, 3248-3257.
- Yamada, A., Sakurai, T., Ochi, D., Mitsuyama, E., Yamauchi, K., & Abe, F. (2015). Antihypertensive effect of the bovine casein-derived peptide Met-Lys-Pro. Food Chemistry, 172, 441-446.
- Yousr, M., & Howell, N. (2015). Antioxidant and ACE inhibitory bioactive peptides purified from egg yolk proteins. International journal of molecular sciences, 16, 29161-29178.
- Zhang, R., Chen, J., Jiang, X., Yin, L., & Zhang, X. (2016a). Antioxidant and hypoglycaemic effects of tilapia skin collagen peptide in mice. International Journal of Food Science & Technology, 51, 2157-2163
- Zhang, T., Nie, S., Liu, B., Yu, Y., Zhang, Y., & Liu, J. (2015). Activity prediction and molecular mechanism of bovine blood derived angiotensin I-converting enzyme inhibitorypeptides. PLoS ONE, 10, e0119598.
- Zhang, Y., Chen, R., Zuo, F., Ma, H., Zhang, Y., & Chen, S. (2016b). Comparison of dipeptidyl peptidase IV-inhibitory activity of peptides from bovine and caprine milk casein by in silico and in vitro analyses. International Dairy Journal, 53, 37-44.
- Zhou, P., Yang, C., Ren, Y., Wang, C., & Tian, F. (2013). What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chemistry, 141, 2967-2973.