On Some Geometrical Aspects of Space-Time Description and Relativity (original) (raw)
2020, arXiv (Cornell University)
Abstract
In order to ask for future concepts of relativity, one has to build upon the original concepts instead of the nowadays common formalism only, and as such recall and reconsider some of its roots in geometry. So in order to discuss 3-space and dynamics, we recall briefly Minkowski's approach in 1910 implementing the nowadays commonly used 4-vector calculus and related tensorial representations as well as Klein's 1910 paper on the geometry of the Lorentz group. To include microscopic representations, we discuss few aspects of Wigner's and Weinberg's 'boost' approach to describe 'any spin' with respect to its reductive Lie algebra and coset theory, and we relate the physical identification to objects in P 5 based on the case (1, 0) ⊕ (0, 1) of the electromagnetic field. So instead of following this-in some aspects-special and misleading 'old' representation theory, based on 4-vector calculus and tensors, we provide and use an alternative representation based on line geometry which-besides comprising known representation theory-is capable of both describing (classical) projective geometry of 3-space as well as it yields spin matrices and the classical Lie transfer. In addition, this geometry is capable of providing a more general route to known Lie symmetries, especially of the su(2)⊕i su(2) Lie algebra of special relativity, as well as it comprises gauge theories and affine geometry. Thus it serves as foundation for a future understanding of more general representation theory of relativity based, however, on roots known from classical projective geometry and P 5. As an application, we discuss Lorentz transformations in point space in terms of line and Complex geometry, where we can identify them as a subset of automorphisms of the Plücker-Klein quadric M 2 4 of P 5. In addition, this description provides an identification as a special, but singular parametrization of the tetrahedral Complex, too. As such, we propose to generalize and supersede the usual rep theory of relativity by an embedding into the general geometry of P 5 , and the use of appropriate concepts of projective and algebraic geometry in Plücker's sense by switching geometrical base elements and using transfer principles.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (88)
- It is not that we want to abolish standard quantum mechanics exercises or standard reps of Lie generators on function spaces, because due to what is known from force systems or e.g. from Staude with respect to the Staude rotation of the massive top [71] which can be represented by one special axis, we can find effective reps attached to one point of space.
- De Alfaro V, Fubini S, Furlan G, and Rossetti C 1973 Currents in Hadron Physics. (Amsterdam, London: North Holland Publishing Company)
- Ball R S 1876. The Theory of Screws: A Study in the Dynamics of a Rigid Body. (Dublin: Hodges, Foster, and Co., Grafton-Street)
- Biedenharn L C, Louck J D 1981. Angular Momentum in Quantum Physics. Theory and Application. (Encyclope- dia of Mathematics and Its Applications) ed. Gian-Carlo Rota. (vol. 8, Reading: Addison-Wesley Publishing Com- pany) (1981)
- Biedenharn L C, Louck J D 1981. The Racah-Wigner Al- gebra in Quantum Theory. (Encyclopedia of Mathemat- ics and Its Applications) ed. Gian-Carlo Rota. (vol. 9, Reading: Addison-Wesley Publishing Company) (1981)
- Catto S 2019. Closing plenary talk at ISQS 26, Prague, July 2019, and private communication.
- Clebsch A 1870. Ueber die Plückerschen Complexe. Math. Ann. 2 1
- Clebsch A 1872. Theorie der binären algebraischen For- men. (Leipzig: B. G. Teubner)
- Dahm R, Kirchbach M, Riska D O 1992. SU(4) Super- multiplet Description of the πN ∆-System at Low Ener- gies and Particle Interpretation in Effective Lagrangeans. Proceedings, Dubna, 1993
- Dahm R, Kirchbach M, Riska D O 1993. Wigner Super- multiplets in π 0 -Photoproduction at Threshold. Invited Talk at the International Workshop on 'Symmetry Meth- ods in Physics', in memory of Professor Ya. A. Smorodin- sky, Dubna, Russia, July 6 -10, 1993. Proceedings, Dubna, 1994
- Dahm R, Kirchbach M 1994. Linear Wave Equations and Effective Lagrangeans for Wigner Supermultiplets. Int. J. Mod. Phys. A10, 4225
- Dahm R, Kirchbach M 1995. The Large Nc-Limit of QCD and Effective Lagrangeans for Spin-Flavour Supermulti- plets. ed. M. Kh. Khankhasayev, Zh. B. Kurmanov (Sin- gapore: World Scientific) (1995)
- Dahm R 1996. Spin-Flavour-Symmetrien und das πN∆- System (Aachen: Shaker Verlag) ISBN 3-8265-1782-2
- Dahm R 1995 Relativistic SU(4) and Quaternions Ad- vances in Applied Clifford Algebra 7(S) 337
- Dahm R 2010. A Symmetry Reduction Scheme of the Dirac Algebra without Dimensional Defects. Yad. Fis. 73 297; Phys. Atom. Nuclei 73 276
- Dahm R 2012. On A Microscopic Representation of Space-Time. Yad. Fis. 75 1244; Phys. Atom. Nuclei 75 1173
- Dahm R 2018 On A Microscopic Representation of Space-Time III. Adv. Appl. Clifford Algebras 29 20; https://doi.org/10.1007/s00006-018-0936-x; see also http://arxiv.org/abs/1508.06872
- Dahm R 2015. On A Microscopic Representation of Space-Time IV. Phys. Atom. Nuclei 80, 512 (2017) QTS 9, Yerevan, http://arxiv.org/abs/1512.07119
- Dahm R 2016. On A Microscopic Representation of Space-Time V. ISQS, Prague, Journal of Physics : Con- ference Series 804 012013 (2017)
- Dahm R 2016. On A Microscopic Representation of Space-Time VI -A Stopover. to be published (2020)
- Dahm R 2018. On A Microscopic Representation of Space-Time VII -On Spin. J. Phys.: Conf. Ser. 965 012012
- Dahm R 2018 On A Microscopic Representation of Space- Time VIII -On Relativity. Phys. Atom. Nuclei 81 819
- Dahm R 2019 On A Microscopic Representation of Space- Time IX -On Spin II. J. Phys.: Conf. Ser. 1194 012023
- Dahm R 2019. Talk at ISQS 26. Prague, July 2019
- Doehlemann K 1905. Projektive Geometrie in synthetis- cher Behandlung. (Sammlung Göschen) (3rd edition, Leipzig: G. J. Göschen'sche Verlagshandlung) (1898)
- Dirac P A M 1935. The Electron Wave Equation in De- Sitter Space. Annals of Mathematics 36 657
- Dirac P A M 1936. Wave Equations in Conformal Space. Annals of Mathematics 37 429
- Dvoeglazov V V 1993. Lagrangean Formulation of the Joos-Weinberg's 2(2S+1)-Theory and Its Connec- tions with the Skew-Symmetric Tensor Description. Preprint:IFUNAM FT93-016, May 1993
- Dvoeglazov V V 1993. The 2(2S+1)-Formalism and Its Connection with Other Descriptions. arXiv:hep- th/9305141v2, 1993/2016
- Dvoeglazov V V 1993. Electrodynamics with Weinberg's Photons. arXiv:hep-th/9306108v1, 1993
- Dvoeglazov V V 1994. 2(2S+1)-Component Model and Its Connection with Other Field Theories. arXiv:hep- th/9401043v3 ; Preprint:IFUNAM FT-94-36, January 1994
- Dvoeglazov V V 2018. Methods for Derivation of Gener- alized Equations in the (S, 0) ⊕ (0, S) Representations of the Lorentz Group. arXiv:1810.0458v1, 2018
- Ehlers J, Pirani F and Schild A 1972. The Geometry of Free Fall and Light Propagation. In: Studies in Relativity. ed L O'Raifeartaigh (Oxford: Clarendon Press) pp 63-84
- Einstein A 1914/1932. Albert Einstein: Akademie- Vorträge. ed D Simon (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA)
- Einstein A 1914. Die formale Grundlage der allge- meinen Relativitätstheorie. Sitzungsberichte der königlich Preussischen Akademie der Wissenschaften, Berlin, SB II, XLI, 1030
- Einstein A 1916. Eine neue formale Deutung der Maxwellschen Feldgleichungen der Elektrodynamik. Sitzungsberichte der königlich Preussischen Akademie der Wissenschaften, Berlin, SB I, VII, 184
- Einstein A, Mayer W 1932. Semi-Vektoren und Spinoren. Sonderausgabe aus den Sitzungsberichten der Preussis- chen Akademie der Wissenschaften, Physikalisch- Mathematische Klasse, Berlin, SB I, XXXII, 522
- Gilmore R 1974. Lie Groups, Lie Algebras and Some of Their Applications (New York: John Wiley & Sons)
- Helgason S 1978 Differential Geometry, Lie Groups, and Symmetric Spaces (San Diego: Academic Press)
- Helgason S 1984 Groups and Geometric Analysis. (San Diego: Academic Press)
- Hesse O 1866. Ein Uebertragungsprincip. Journal für die reine und angewandte Mathematik 66, 15
- Hilbert D 1909. Ueber die Gestalt einer Fläche 4ter Ord- nung. Göttinger Nachrichten 1909 308
- Hilbert D 1915. Die Grundlagen der Physik. (Erste Mit- teilung.) Göttinger Nachrichten 1915 395
- Hilbert D 1916. Die Grundlagen der Physik. (Zweite Mit- teilung.) Göttinger Nachrichten 1916 53
- Hilbert D 1924. Die Grundlagen der Physik. Math. Ann. 92 1
- Hudson R W H T 1905. Kummer's Quartic Surface. (Cambridge Mathematical Library) (Cambridge: Cam- bridge University Press, 1990)
- Joos H 1962. Zur Darstellungstheorie der inhomogenen Lorentzgruppe als Grundlage quantenmechanischer Kine- matik. Fortschr. Phys. 10, 65
- Klein F 1871. Notiz betreffend den Zusammenhang der Linien-Geometrie mit der Mechanik starrer Körper. Math. Ann. 4 403
- Klein F 1872. Ueber Liniengeometrie und metrische Ge- ometrie. Math. Ann. 5, 257
- Klein F, Sommerfeld A 1897. Über die Theorie des Kreisels. Heft I (Leipzig: B. G. Teubner)
- Klein F, Sommerfeld A 1898. Über die Theorie des Kreisels. Heft II (Leipzig: B. G. Teubner)
- Klein F 1906. Zur Schraubentheorie von Sir Robert Ball. Math. Ann. 62, 419
- Klein F 1910. Über die geometrischen Grundlagen der Lorentzgruppe. Jahresberichte Deutsche Math. Vereini- gung 19 281
- Klein F 1917. Zu Hilberts erster Note über die Grundla- gen der Physik. Göttinger Nachrichten 1917 469
- Klein F 1926. Vorlesungen über höhere Geometrie. (Die Grundlehren der mathematischen Wissenschaft XXII) (Berlin: Springer)
- Kummer E E 1866. Über die algebraischen Strahlensys- teme, in's Besondere über die der ersten und zweiten Ord- nung. Abh. Akad. Wiss. Berlin, Math. Abhandlungen, 1
- Lie S 1872. Ueber Complexe, insbesondere Linien-und Kugel-Complexe, mit Anwendung auf die Theorie par- tieller Differential-Gleichungen. Math. Ann. 5 145; Ue- ber einige partielle Differential-Gleichungen zweiter Ord- nung. Math. Ann. 5 209
- Lie S 1896. Geometrie der Berührungstransformationen. (Leipzig: Teubner)
- Lüroth O 1867. Zur Theorie der windschiefen Flächen. Journal für die reine und angewandte Mathematik 67, 130 (1867)
- Minkowski H 1910. Die Grundgleichungen für die elek- tromagnetischen Vorgänge in bewegten Körpern. Math. Ann. 68, 472
- Pauli W 1933 Über die Formulierung der Naturgesetze mit fünf homogenen Koordinaten. Teil I: Klassische The- orie. Annalen der Physik 18 305
- Pauli W 1933 Über die Formulierung der Naturgesetze mit fünf homogenen Koordinaten. Teil II: Die Diracschen Gleichungen für die Materiewellen. Annalen der Physik 18 337
- Plücker J 1838 Discussion de la forme générale des ondes lumineuses. Journal für die reine und angewandte Math- ematik 19 1; ibd. 19 91
- Plücker J 1847 Über eine neue mechanische Erzeugung der Flächen zweiter Ordnung und Classe. Journal für die reine und angewandte Mathematik 34 357
- Plücker J 1865. On a new Geometry of Space. Phil. Trans. R. Soc. London 155 725
- Plücker J 1866. Fundamental Views regarding Mechanics. Phil. Trans. R. Soc. London 156 361
- Plücker J 1868/1869. Neue Geometrie des Raumes. ed A Clebsch and F Klein (Leipzig: B. G. Teubner)
- Poincaré H. http://henripoincarepapers.univ- lorraine.fr/, as of 31.7.2019
- Schmeikal B 2018. Private discussions
- Sexl R U, Urbantke H K 1992. Relativität, Gruppen, Teilchen. (3rd edition, Wien New York: Springer)
- Smorodinskij Ya A 1965. Kinematik und Lobatschewski- Geometrie. Fortschr. Phys. 13, 157 [Atomnaja Energija 14, 110 (1963)]
- Staude O 1894. Ueber permanente Rotationsaxen bei der Bewegung eines schweren Körpers um einen festen Punkt. Journal für die reine und angewandte Mathematik 113, 318
- Staude O 1905. Analytische Geometrie des Punktes, der geraden Linie und der Ebene. (B. G. Teubner's Lehrbücher der Mathematischen Wissenschaften XVI) (Leipzig: B. G. Teubner, 1905)
- Study E 1903. Geometrie der Dynamen. (Leipzig: Teub- ner)
- Study E 1905. Über Hamiltons geometrische Optik und deren Beziehung zur Theorie der Berührungstransformationen. Jahresberichte Deutsche Math. Vereinigung 14 424
- Tiwari S C 2012. On local duality invariance in electro- magnetism. arXiv:1110.5511v2 physics.gen-ph, 2011
- Trehub A. https://people.umass.edu/trehub/, as of 31.7.2019
- Veblen O, Hoffmann B 1930. Projective Relativity. Phys. Rev. 36 810
- Veblen O 1933. Projektive Relativitätstheorie. (Ergeb- nisse der Mathematik und ihrer Grenzgebiete) (Berlin: Springer)
- Veblen O 1933. Spinors in Projective Relativity. Proc. Nat. Acad. Sciences 19 979
- von Laue M 1950. Zur Minkowskischen Elektrodynamik der bewegten Körper. Z. Physik 128, 387 (1950), doi:10.1007/BF01339439
- Weinberg St 1964. Feynman Rules for Any Spin. Phys. Rev. 133, B1318 (1964)
- Weinberg St 1964. Feynman Rules for Any Spin. II. Massless particles. Phys. Rev. 134, B882 (1964)
- Weinberg St 1965. Photons and Gravitons in Pertur- bation Theory: Derivation of Maxwell's and Einstein's Equation. Phys. Rev. 138, B988 (1965)
- Weyl H 1918. Raum-Zeit-Materie. (6th ed. Berlin Heidel- berg New York: Springer, 1970 (1918))
- Wigner E P 1962. Invariant Quantum Mechanical Equa- tions of Motion. In: Theoretical Physics, Lectures pre- sented at the Seminar on Theoretical Physics, Trieste (Vienna, International Atomic Energy Agency 1963)
- Zindler K 1902. Liniengeometrie mit Anwendun- gen. (Sammlung Schubert XXXIV) (Leipzig: G. J. Göschensche Verlagshandlung)
- Zindler K 1906. Liniengeometrie mit Anwendungen. (Sammlung Schubert LI) (Leipzig: G. J. Göschensche Verlagshandlung)