The Obstacles to a Broader Application of Alkali-Activated Binders as a Sustainable Alternative—A Review (original) (raw)
Related papers
An overview of factors influencing the properties of alkali-activated binders
Journal of Cleaner Production, 2021
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Alkali-activated binders: A review
Construction and Building Materials, 2008
The disintegration of concrete structures made of ordinary Portland cement (OPC) is a worrying topic of increasing significance. The development of new binders with longer durability is therefore needed. Alkali-activated binders have emerged as an alternative to OPC binders, which seems to have superior durability and environmental impact. This paper reviews current knowledge about alkali-activated binders. The subjects of Part 1 in this paper are historical background, terminology and hydration products. The proper terminology to designate these new binders will be discussed. The influence of the prime materials and the type of alkaline activator on the reaction mechanisms and on the nature of the reaction products will be described.
Application of Alkali-Activated Sustainable Materials: A Step towards Net Zero Binder
Energies
Economic growth and rapid urbanization have resulted in the increase in demand for infrastructure development. To meet this ever increasing demand, conventional construction materials such as concrete are used, which requires an energy intensive process that in turn impacts the environment adversely. Ordinary Portland Cement, being the dominant binder in the industry, contributes around 8% of worldwide annual carbon emissions, and this is expected to reach around 20% by 2050. Population growth has resulted in the significant increase in agro-industrial waste generation during recent years. Inadequate waste management raises a number of environmental concerns. With the growing economy and rising living standards, global raw material consumption is expected to double by 2060. The reutilization of waste materials will aid in their management, while conserving the available resources. Alkali-activated materials (AAM) have recently been introduced as an eco-friendly alternative to conven...
Life Cycle Assessment of the Sustainability of Alkali-Activated Binders
Biomimetics
Limiting the consumption of nonrenewable resources and minimizing waste production and associated gas emissions are the main priority of the construction sector to achieve a sustainable future. This study investigates the sustainability performance of newly developed binders known as alkali-activated binders (AABs). These AABs work satisfactorily in creating and enhancing the concept of greenhouse construction in accordance with sustainability standards. These novel binders are founded on the notion of utilizing ashes from mining and quarrying wastes as raw materials for hazardous and radioactive waste treatment. The life cycle assessment, which depicts material life from the extraction of raw materials through the destruction stage of the structure, is one of the most essential sustainability factors. A recent use for AAB has been created, such as the use of hybrid cement, which is made by combining AAB with ordinary Portland cement (OPC). These binders are a successful answer to a...
Alkali-activated binders by use of industrial by-products
Cement and Concrete Research, 2005
Cement kiln dust (CKD) materials are used as alkaline accelerators for latent hydraulic substances and as alkali activators for different alumosilicate materials, including ground-granulated blast furnace slag, low-calcium fly ash and metakaolin. The dusts differ in their phase composition, especially in the amount of reactive phases and the kind and amount of alkali salts. The quantitative phase composition, pore solution composition and strength behavior of the activated blends is reported.
Journal of Composites Science, 2021
Alkali-activated binders (AABs) are developed through the activation of aluminosilicate-rich materials using alkaline reagents. The characteristics of AABs developed using a novel dry-mixing technique incorporating powder-based reagents/activators are extensively explored. A total of forty-four binder mixes are assessed in terms of their fresh and hardened state properties. The influence of mono/binary/ternary combinations of supplementary cementitious materials (SCMs)/precursors and different types/combinations/dosages of powder-based reagents on the strength and workability properties of different binder mixes are assessed to determine the optimum composition of precursors and the reagents. The binary (55% fly ash class C and 45% ground granulated blast furnace slag) and ternary (25% fly ash class C, 35% fly ash class F and 40% ground granulated blast furnace slag) binders with reagent-2 (calcium hydroxide and sodium sulfate = 2.5:1) exhibited desired workability and 28-day compre...
Sustainability, 2021
The sustainability of resources is becoming a worldwide concern, including construction and building materials, especially with the alarming increase rate in global population. Alternative solutions to ordinary Portland cement (OPC) as a concrete binder are being studied, namely the so-called alkali-activated cements (AAC). These are less harmful to the environment, as lower CO2 emissions are associated with their fabrication, and their mechanical properties can be similar to those of the OPC. The aim of developing alkali-activated materials (AAM) is the maximization of the incorporated recycled materials, which minimises the CO2 emissions and cost, while also achieving acceptable properties for construction applications. Therefore, various efforts are being made to produce sustainable construction materials based on different sources and raw materials. Recently, significant attention has been raised from the by-products of the steelmaking industry, mostly due to their widespread av...
A review on mineral waste for chemical-activated binders: Mineralogical and chemical characteristics
This review discusses the potential of alkali-activated materials obtained from mineral waste. A brief historical background on alkali-activated materials is presented. Recent advances in the development of binders obtained from mineral wastes and alkali-activated solutions are described. The scope of this state of the art review is to identify current knowledge in support that mineral waste can be used for the production of alkali-activated binders. In addition, this review identifies the chemical activators that can be effectively utilized for such purposes in the age when wastes are still viewed by industry as disposable. Some mineral wastes which are discussed can be viewed as a new resource for recycling and recovery which will offer important economic and social benefits.