Neutrino Mass and Higgs Self-Coupling Predictions (original) (raw)

Neutrinoless Double-Beta Decay: A Roadmap for Matching Theory to Experiment

arXiv (Cornell University), 2022

The observation of neutrino oscillations and hence non-zero neutrino masses provided a milestone in the search for physics beyond the Standard Model. But even though we now know that neutrinos are massive, the nature of neutrino masses, i.e., whether they are Dirac or Majorana, remains an open question. A smoking-gun signature of Majorana neutrinos is the observation of neutrinoless double-beta decay, a process that violates the lepton-number conservation of the Standard Model. This white paper focuses on the theoretical aspects of the neutrinoless double-beta decay program and lays out a roadmap for future developments. The roadmap is a multi-scale path starting from high-energy models of neutrinoless double-beta decay all the way to the low-energy nuclear many-body problem that needs to be solved to supplement measurements of the decay rate. The path goes through a systematic effective-field-theory description of the underlying processes at various scales and needs to be supplemented by lattice quantum chromodynamics input. The white paper also discusses the interplay between neutrinoless double-beta decay, experiments at the Large Hadron Collider and results from astrophysics and cosmology in probing simplified models of lepton-number violation at the TeV scale, and the generation of the matter-antimatter asymmetry via leptogenesis. This white paper is prepared for the topical groups TF11 (Theory of Neutrino Physics), TF05 (Lattice Gauge Theory), RF04 (Baryon and Lepton Number Violating Processes), NF03 (Beyond the Standard Model) and NF05

Radiative neutrino mass generation linked to neutrino mixing and 0νββ-decay predictions

Physical Review D, 2014

We discuss the connection between the origin of neutrino masses and their mixings which arises in a class of scenarios with radiatively induced neutrino masses. In these scenarios, the neutrino mass matrix acquires textures with two entries close to zero in the basis where the charged-lepton mass matrix is diagonal. This results in specific constraints on the neutrino mixing parameters, which leads to the prediction of (i) a normal ordering of neutrino masses with the lightest neutrino mass in the ∼ meV range, and (ii) testable correlations among the various mixing angles, including a nonzero θ 13 angle with its exact value correlated with the values of the atmospheric angle θ 23 and the CP phase δ. We quantify the impact of deviations from exact zeroes in the mass matrix texture, and connect it to the amount of hierarchy among Yukawa couplings. These scenarios of radiative neutrino mass generation also give rise to new short-range contributions to neutrinoless double beta decay, which dominate over the usual light-neutrino exchange contribution. As a result, this class of models can have a sizable neutrinoless double beta decay rate, in the range of upcoming experiments despite the normal mass ordering of neutrinos. 1 We adopt here the convention for the Majorana phases given in [23].

Neutrino mass physics

Nuclear Physics B - Proceedings Supplements, 1994

Present limits on neutrino masses are briefly reviewed, along with cosmological and astrophysical hints from dark matter, solar and atmospheric neutrino observations that suggest neutrino masses.

Spectrum of neutrino masses and their nature in the light of present and future experiments

The present experimental data on neutrino oscillations, neutrinoless double beta decay and tritium beta decay are collected together and possible mass ranges for Dirac and Majorana neutrinos are found. Four future experimental situations are investigated: both decay experiments give only upper bounds, one of them gives a positive result (| mν | = 0 or m β = 0), or finally both effective neutrino masses are different from zero (| mν | = 0 and m β = 0). Each scenario gives new information on neutrino masses and nature but only the last has a chance to resolve the problem and give some additional information on CP violation in the lepton sector.

Brief neutrino physics update

2003

The discovery of neutrino mass establishes the need for physics beyond the Standard Model. I summarize the status of two-and three-neutrino oscillation parameters from current solar, atmospheric, reactor and accelerator data. Future neutrinoless double beta decay experiments will probe the nature of neutrinos, as well as the absolute scale of neutrino mass, also tested by tritium beta decay spectra and cosmological observations. Sterile neutrinos do not provide a good way to account for the LSND hint, which needs further confirmation. Finally I sketch the main theoretical ideas for generating neutrino mass.

Status and implications of neutrino masses: A brief panorama

International Journal of Modern Physics a, 2015

With the historic discovery of the Higgs boson our picture of particle physics would have been complete were it not for the neutrino sector and cosmology. I briefly discuss the role of neutrino masses and mixing upon gauge coupling unification, electroweak breaking and the flavor sector. Time is ripe for new discoveries such as leptonic CP violation, charged lepton flavor violation and neutrinoless double beta decay. Neutrinos could also play a role in elucidating the nature of dark matter and cosmic inflation.

Neutrino Physics Now and in the Near Future

2014

The current status of neutrino physics is reviewed with some near future perspective. After recollecting the birth of modern neutrino physics with nonzero masses and flavor mixing, I summarize the present status of measurement of the mixing parameters in 2-3, 1-2, and 1-3 sectors of the MNS matrix. Then, I describe the attempts to uncover the regularities, if any, in the measured values of the mixing angles; mostly reviewing. Yet, a possible large deviation of \theta_{23} to the second octant may trigger interests in the triangle relation of the lepton mixing angles. In the latter part of my lecture some perspective of determination of the mass hierarchy and measurement of lepton Kobayashi-Maskawa phase delta\deltadelta are described. Finally, I discuss the prospects of the new, fast developing field of high-energy neutrino astrophysics, and the emerging new precision era of cosmology and particle physics. I conclude with optimistic speculations.

Massive neutrinos and the Higgs boson mass window

Physical Review D, 2000

If neutrino masses are produced by a see-saw mechanism the Standard Model prediction for the Higgs mass window (defined by upper (perturbativity) and lower (stability) bounds) can be substantially affected. Actually the Higgs mass window can close completely, which settles an upper bound on the Majorana mass for the right-handed neutrinos, M , ranging from 10 13 GeV for three generations of quasi-degenerate massive neutrinos with mν ≃ 2 eV, to 5 × 10 14 GeV for just one relevant generation with mν ≃ 0.1 eV. A slightly weaker upper bound on M , coming from the requirement that the neutrino Yukawa couplings do not develop a Landau pole, is also discussed. PACS: 14.80.Bn, 14.60.Pq, Observations of the flux of atmospheric neutrinos by SuperKamiokande [1] provide strong evidence for neutrino oscillations, which in turn imply that (at least two species of) neutrinos must be massive. Additional support to this hypothesis is given by the need of neutrino oscillations to explain the solar neutrino flux deficit and the possible essential role of the neutrinos in the large scale structure of the universe [2]. Much work has been devoted in the last months in order to guess and to explain the structure and the origin of the neutrino mass matrices capable to account for the different observations .

Neutrino masses twenty-five years later

2003

The discovery of neutrino mass marks a turning point in elementary particle physics, with important implications for nuclear and astroparticle physics. Here I give a brief update, where I summarize the current status of three-neutrino oscillation parameters from current solar, atmospheric, reactor and accelerator neutrino data, discuss the case for sterile neutrinos and LSND, and also the importance of tritium and double beta decay experiments probing the absolute scale of neutrino mass. In this opininated look at the present of neutrino physics, I keep an eye in the future, and a perspective of the past, taking the oportunity to highlight Joe Schechter's pioneering contribution, which I have had the fortune to share, as his PhD student back in the early eighties.

Neutrinoless double beta decay and direct searches for neutrino mass

2004

* Full texts of the report of the working group. For the summary report of the APS Multidivisional Neutrino Study, 'The Neutrino Matrix', see physics/0411216 0νββ decay, independent of its rate, would show that neutrinos, unlike all the other constituents of matter, are their own antiparticles. There is no other realistic way to determine the nature-Dirac or Majorana, of massive neutrinos. This would be a discovery of major importance, with impact not only on this fundamental question, but also on the determination of the absolute neutrino mass scale, and on the pattern of neutrino masses, and possibly on the problem of CP violation in the lepton sector, associated with Majorana neutrinos. There is a consensus on this basic point which we translate into the recommendations how to proceed with experiments dedicated to the search of the 0νββ decay, and how to fund them. • To reach our conclusion, we have to consider past achievements, the size of previous experiments, and the existing proposals. There is a considerable community of physicists worldwide as well as in the US interested in pursuing the search for the 0νββ decay. Past experiments were of relatively modest size. Clearly, the scope of future experiments should be considerably larger, and will require advances in experimental techniques, larger collaborations and additional funding. In terms of m ββ , the effective neutrino Majorana mass that can be extracted from the observed 0νββ decay rate, there are three ranges of increasing sensitivity, related to known neutrino-mass scales of neutrino oscillations. • The ∼100-500 meV m ββ range corresponds to the quasi-degenerate spectrum of neutrino masses. The motivation for reaching this scale has been strengthened by the recent claim of an observation of 0νββ decay in 76 Ge; a claim that obviously requires further investigation. To reach this scale and perform reliable measurements, the size of the experiment should be approximately 200 kg of the decaying isotope, with a corresponding reduction of the background. This quasi-degenerate scale is achievable in the relatively near term, ∼ 3-5 years. Several groups with considerable US participation have well established plans to build ∼ 200-kg devices that could scale straightforwardly to 1 ton (Majorana using 76 Ge, Cuore using 130 Te, and EXO using 136 Xe). There are also other proposed experiments worldwide which offer to study a number of other isotopes and could reach similar sensitivity after further R&D. Several among them (e.g. Super-NEMO, MOON) have US participation. By making measurements in several nuclei the uncertainty arising from the nuclear matrix elements would be reduced. The development of different detection techniques, and measurements in several nuclei, is invaluable for establishing the existence (or lack thereof) of the 0νββ decay at this effective neutrino mass range. • The ∼20-55 meV range arises from the atmospheric neutrino oscillation results. Observation of m ββ at this mass scale would imply the inverted neutrino mass hierarchy or the normal-hierarchy ν mass spectrum very near the quasidegenerate region. If either this or the quasi-degenerate spectrum is established, it would be invaluable not only for the understanding of the origin of neutrino mass, but also as input to the overall neutrino physics program (long baseline oscillations, search for CP violations, search for neutrino mass in tritium beta decay and astrophysics/cosmology, etc.) To study the 20-50 meV mass range will require about 1 ton of the isotope mass, a challenge of its own. Given the importance, and the points discussed above, more than one experiment of that size is desirable. • The ∼2-5 meV range arises from the solar neutrino oscillation results and will almost certainly lead to the 0νββ decay, provided neutrinos are Majorana particles. To reach this goal will require ∼100 tons of the decaying isotope, and no current technique provides such a leap in sensitivity. • The qualitative physics results that arise from an observation of 0νββ decay are profound. Hence, the program described above is vital and fundamentally important even if the resulting m ββ would be rather uncertain in value. However, by making measurements in several nuclei the uncertainty arising from the nuclear matrix elements would be reduced. • Unlike double-beta decay, beta-decay endpoint measurements search for a kinematic effect due to neutrino mass and thus are "direct searches" for neutrino mass. This technique, which is essentially free of theoretical assumptions about neutrino properties, is not just complementary. In fact, both types of measurements will be required to fully untangle the nature of the neutrino mass. Excitingly, a very large new beta spectrometer is being built in Germany. This KATRIN experiment has a design sensitivity approaching 200 meV. If the neutrino masses are quasi-degenerate, as would be the case if the recent double-beta decay claim proves true, KATRIN will see the effect. In this case the 0νββ-decay experiments can provide, in principle, unique information about CP-violation in the lepton sector, associated with Majorana neutrinos. • Cosmology can also provide crucial information on the sum of the neutrino masses. This topic is summarized in a different section of the report, but it should be mentioned here that the next generation of measurements hope to be able to observe a sum of neutrino masses as small as 40 meV. We would like to emphasize the complementarity of the three approaches, 0νββ , β decay, and cosmology. Recommendations: We conclude that such a double-beta-decay program can be summarized as having three components and our recommendations can be summarized as follows: