A New Algorithm for the System Identification of Shear Structures (original) (raw)

Advanced Materials Research, 2012

Abstract

In general terms, the aim of "System Identification" is to determine the dynamic characteristics of mechanical systems. These characteristics include both frequency characteristics (frequencies, mode shapes, and damping ratios) and the system's characteristic matrices (the matrices of mass, viscous damping, stiffness, Coulomb damping or coefficients of friction, and the Duffing stiffness). In such fields as "Damage Detection" in structures, identification of the system's characteristic matrices is of the same importance as the identification of the frequency characteristics, or even more so, by identifying these matrices, the intended goals in Damage Detection can be achieved. In line with such identification, a new algorithm for the system identification of shear structures is presented in the paper. Taking into account the fundamental and significant effect of noise attenuation in boosting the levels of precision and the correctness of system identification, this method helps to achieve noise attenuation by trimming noisy records in the frequency domain, in parallel with the identification of the structural system. The efficiency and precision of the method have been examined through the application of a "closed loop solution" to a five storey model of shear structure.

Karen Khanlari hasn't uploaded this paper.

Let Karen know you want this paper to be uploaded.

Ask for this paper to be uploaded.