Identifying the status of genetic lesions in cancer clinical trial documents using machine learning (original) (raw)
Related papers
Gene Mutation Classification through Text Evidence Facilitating Cancer Tumour Detection
2021
A cancer tumour consists of thousands of genetic mutations. Even after advancement in technology, the task of distinguishing genetic mutations, which act as driver for the growth of tumour with passengers (Neutral Genetic Mutations), is still being done manually. This is a time-consuming process where pathologists interpret every genetic mutation from the clinical evidence manually. These clinical shreds of evidence belong to a total of nine classes, but the criterion of classification is still unknown. The main aim of this research is to propose a multiclass classifier to classify the genetic mutations based on clinical evidence (i.e., the text description of these genetic mutations) using Natural Language Processing (NLP) techniques. The dataset for this research is taken from Kaggle and is provided by the Memorial Sloan Kettering Cancer Center (MSKCC). The world-class researchers and oncologists contribute the dataset. Three text transformation models, namely, CountVectorizer, Tf...
Machine Learning Approach for Cancer Entities Association and Classification
arXiv (Cornell University), 2023
According to the World Health Organization (WHO), cancer is the second leading cause of death globally. Scientific research on different types of cancers grows at an ever-increasing rate, publishing large volumes of research articles every year. The insight information and the knowledge of the drug, diagnostics, risk, symptoms, treatments, etc., related to genes are significant factors that help explore and advance the cancer research progression. Manual screening of such a large volume of articles is very laborious and time-consuming to formulate any hypothesis. The study uses the two most non-trivial NLP, Natural Language Processing functions, Entity Recognition, and text classification to discover knowledge from biomedical literature. Named Entity Recognition (NER) recognizes and extracts the predefined entities related to cancer from unstructured text with the support of a user-friendly interface and built-in dictionaries. Text classification helps to explore the insights into the text and simplifies data categorization, querying , and article screening. Machine learning classifiers are also used to build the classification model and Structured Query Languages (SQL) is used to identify the hidden relations that may lead to significant predictions.
An automated procedure to identify biomedical articles that contain cancer-associated gene variants
Human Mutation, 2006
The proliferation of biomedical literature makes it increasingly difficult for researchers to find and manage relevant information. However, identifying research articles containing mutation data, a requisite first step in integrating large and complex mutation data sets, is currently tedious, time-consuming and imprecise. More effective mechanisms for identifying articles containing mutation information would be beneficial both for the curation of mutation databases and for individual researchers. We developed an automated method that uses information extraction, classifier, and relevance ranking techniques to determine the likelihood of MEDLINE abstracts containing mentions of genomic variation data suitable for inclusion in mutation databases. We targeted the CDKN2A (p16) gene and the procedure for document identification currently used by CDKN2A Database curators as a measure of feasibility. A set of abstracts was manually identified from a MEDLINE search as potentially containing specific CDKN2A mutation events. A subset of these abstracts was used as a training set for a maximum entropy classifier to identify text features distinguishing "relevant" from "not relevant" abstracts. Each document was represented as a set of indicative word, word pair, and entity tagger-derived genomic variation features. When applied to a test set of 200 candidate abstracts, the classifier predicted 88 articles as being relevant; of these, 29 of 32 manuscripts in which manual curation found CDKN2A sequence variants were positively predicted. Thus, the set of potentially useful articles that a manual curator would have to review was reduced by 56%, maintaining 91% recall (sensitivity) and more than doubling precision (positive predictive value). Subsequent expansion of the training set to 494 articles yielded similar precision and recall rates, and comparison of the original and expanded trials demonstrated that the average precision improved with the larger data set. Our results show that automated systems can effectively identify article subsets relevant to a given task and may prove to be powerful tools for the broader research community. This procedure can be readily adapted to any or all genes, organisms, or set of documents.
Extracting Biomarker Information Applying Natural Language Processing and Machine Learning
2010 4th International Conference on Bioinformatics and Biomedical Engineering, 2010
In this paper, we detail an approach to a very specific task of information extraction namely, extracting biomarker information in biomedical literature. Starting with the abstract of a given publication, we first identify the evaluative sentence(s) among other sentences by recognizing words and phrases in the text belonging to semantic categories of interest to bio-medical entities (i.e., semantic category recognition). For the entities like, protein, gene and disease, we determine whether the statement refers to biomarker relationship (i.e., assertion classification). Finally, we identify the biomarker relationship among the biomedical entities (i.e., semantic relationship classification). The system, Biomarker Information Extraction Tool (BIET) implements Machine Learning-based biomarker extraction using support vector machines (SVM). The system is trained and tested on a corpus of oncology related PubMed/MEDLINE literatures hand-annotated with biomarker information. We investigate the effectiveness of different features for this task and examine the amount of training data needed to learn the biomarker relationship with the entities. Our system achieved an average Fscore of 86% for the task of biomarker information extraction comparing to the human annotated dataset (i.e. gold standard) scores.
eGARD: Extracting associations between genomic anomalies and drug responses from text
Tumor molecular profiling plays an integral role in identifying genomic anomalies which may help in personalizing cancer treatments, improving patient outcomes and minimizing risks associated with different therapies. However, critical information regarding the evidence of clinical utility of such anomalies is largely buried in biomedical literature. It is becoming prohibitive for biocurators, clinical researchers and oncologists to keep up with the rapidly growing volume and breadth of information, especially those that describe therapeutic implications of biomarkers and therefore relevant for treatment selection. In an effort to improve and speed up the process of manually reviewing and extracting relevant information from literature, we have developed a natural language processing (NLP)-based text mining (TM) system called eGARD (extracting Genomic Anomalies association with Response to Drugs). This system relies on the syntactic nature of sentences coupled with various textual f...
Automated recognition of malignancy mentions in biomedical literature
BMC Bioinformatics, 2006
The rapid proliferation of biomedical text makes it increasingly difficult for researchers to identify, synthesize, and utilize developed knowledge in their fields of interest. Automated information extraction procedures can assist in the acquisition and management of this knowledge. Previous efforts in biomedical text mining have focused primarily upon named entity recognition of well-defined molecular objects such as genes, but less work has been performed to identify disease-related objects and concepts. Furthermore, promise has been tempered by an inability to efficiently scale approaches in ways that minimize manual efforts and still perform with high accuracy. Here, we have applied a machine-learning approach previously successful for identifying molecular entities to a disease concept to determine if the underlying probabilistic model effectively generalizes to unrelated concepts with minimal manual intervention for model retraining.
An entity tagger for recognizing acquired genomic variations in cancer literature
Bioinformatics/computer Applications in The Biosciences, 2004
VTag is an application for identifying the type, genomic location and genomic state-change of acquired genomic aberrations described in text. The application uses a machine learning technique called conditional random fields. VTag was tested with 345 training and 200 evaluation documents pertaining to cancer genetics. Our experiments resulted in 0.8541 precision, 0.7870 recall and 0.8192 F-measure on the evaluation set. Availability: The software is available at
Text mining of cancer-related information: Review of current status and future directions
International Journal of Medical Informatics, 2014
This paper reviews the research literature on text mining (TM) with the aim to find out (1) which cancer domains have been the subject of TM efforts, (2) which knowledge resources can support TM of cancer-related information and (3) to what extent systems that rely on knowledge and computational methods can convert text data into useful clinical information. These questions were used to determine the current state of the art in this particular strand of TM and suggest future directions in TM development to support cancer research. Methods: A review of the research on TM of cancer-related information was carried out. A literature search was conducted on the Medline database as well as IEEE Xplore and ACM digital libraries to address the interdisciplinary nature of such research. The search results were supplemented with the literature identified through Google Scholar. Results: A range of studies have proven the feasibility of TM for extracting structured information from clinical narratives such as those found in pathology or radiology reports. In this article, we provide a critical overview of the current state of the art for TM related to cancer. The review highlighted a strong bias towards symbolic methods, e.g. named entity recognition (NER) based on dictionary lookup and information extraction (IE) relying on pattern matching. The F-measure of NER ranges between 80% and 90%, while that of IE for simple tasks is in the high 90s. To further improve the performance, TM approaches need to deal effectively with idiosyncrasies of the clinical sublanguage such as non-standard abbreviations as well as a high degree of spelling and grammatical errors. This requires a shift from rule-based methods to machine learning following the success of similar trends in biological applications of TM. Machine learning approaches require large training datasets, but clinical narratives are not readily available for TM research due to privacy and confidentiality concerns. This issue remains the main bottleneck for progress in this area. In addition, there is a need for a comprehensive cancer ontology that would enable semantic representation of textual information found in narrative reports.
Identifying and extracting malignancy types in cancer literature
2005
ABSTRACT Summary: MTag is an application for identifying and extracting clinical descriptions of malignancy presented in text. The application uses the machine learning technique Conditional Random Fields and incorporates domain-specific features. MTag was tested with 1,010 training and 432 evaluation documents pertaining to cancer genomics. Our experiments resulted in 0.85 precision, 0.82 recall, and 0.83 F-measure on the evaluation set. Availability: The software is available at http://bioie. ldc. upenn. edu/index.
Journal of Biomedical Informatics, 2012
The main objective of this study was to investigate the feasibility of using PharmGKB, a pharmacogenomic database, as a source of training data in combination with text of MEDLINE abstracts for a text mining approach to identification of potential gene targets for pathway-driven pharmacogenomics research. We used the manually curated relations between drugs and genes in PharmGKB database to train a support vector machine predictive model and applied this model prospectively to MEDLINE abstracts. The gene targets suggested by this approach were subsequently manually reviewed. Our quantitative analysis showed that a support vector machine classifiers trained on MEDLINE abstracts with single words (unigrams) used as features and PharmGKB relations used for supervision, achieve an overall sensitivity of 85% and specificity of 69%. The subsequent qualitative analysis showed that gene targets ''suggested'' by the automatic classifier were not anticipated by expert reviewers but were subsequently found to be relevant to the three drugs that were investigated: carbamazepine, lamivudine and zidovudine. Our results show that this approach is not only feasible but may also find new gene targets not identifiable by other methods thus making it a valuable tool for pathway-driven pharmacogenomics research.