On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and the receptor ACE2 (original) (raw)
Related papers
Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development
Frontiers in Pharmacology
COVID-19 caused by SARS-CoV-2 has raised a health crisis worldwide. The high morbidity and mortality associated with COVID-19 and the lack of effective drugs or vaccines for SARS-CoV-2 emphasize the urgent need for standard treatment and prophylaxis of COVID-19. The receptor-binding domain (RBD) of the glycosylated spike protein (S protein) is capable of binding to human angiotensin-converting enzyme 2 (hACE2) and initiating membrane fusion and virus entry. Hence, it is rational to inhibit the RBD activity of the S protein by blocking the RBD interaction with hACE2, which makes the glycosylated S protein a potential target for designing and developing antiviral agents. In this study, the molecular features of the S protein of SARS-CoV-2 are highlighted, such as the structures, functions, and interactions of the S protein and ACE2. Additionally, computational tools developed for the treatment of COVID-19 are provided, for example, algorithms, databases, and relevant programs. Finally...
arXiv: Biomolecules, 2020
SARS-CoV-2, the causative agent of the disease known as Covid-19, has so far reported around 3,435,000 cases of human infections, including more than 239,000 deaths in 187 countries, with no effective treatment currently available. For this reason, it is necessary to explore new approaches for the development of a drug capable of inhibiting the entry of the virus into the host cell. Therefore, this work includes the exploration of potential inhibitory compounds for the Spike protein of SARS-CoV-2 (PDB ID: 6VSB), which were obtained from The Patogen Box. Later, they were filtered through virtual screening and molecular docking techniques, thus obtaining a top of 1000 compounds, which were used against a binding site located in the Receptor Binding Domain (RBD) and a cryptic site located in the N-Terminal Domain (NTD), resulting in good pharmaceutical targets for the blocking the infection. From the top 1000, the best compound (TCMDC-124223) was selected for the binding site. It inter...
2022
ABSTRACTA highly efficient and robust multiple scales in silico protocol, consisting of atomistic constant charge Molecular Dynamics (MD), constant-charge coarse-grain (CG) MD and constant-pH CG Monte Carlo (MC), has been used to study the binding affinities, the free energy of complexation of selected antigen-binding fragments of the monoclonal antibody (mAbs) CR3022 (originally derived from SARS-CoV-1 patients almost two decades ago) and 11 SARS-CoV-2 variants including the wild type. CR3022 binds strongly to the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, but chooses a different site rather than the receptor-binding motif (RBM) of RBD, allowing its combined use with other mAbs against new emerging virus variants. Totally 235,000 mAbs structures were generated using the RosettaAntibodyDesign software, resulting in top 10 scored CR3022-RBD complexes with critical mutations and compared to the native one, all having the potential to block virus-host cell interaction. ...
Viruses
Currently, SARS-CoV-2 causing coronavirus disease 2019 (COVID-19) is responsible for one of the most deleterious pandemics of our time. The interaction between the ACE2 receptors at the surface of human cells and the viral Spike (S) protein triggers the infection, making the receptor-binding domain (RBD) of the SARS-CoV-2 S-protein a focal target for the neutralizing antibodies (Abs). Despite the recent progress in the development and deployment of vaccines, the emergence of novel variants of SARS-CoV-2 insensitive to Abs produced in response to the vaccine administration and/or monoclonal ones represent a potential danger. Here, we analyzed the diversity of neutralizing Ab epitopes and assessed the possible effects of single and multiple mutations in the RBD of SARS-CoV-2 S-protein on its binding affinity to various antibodies and the human ACE2 receptor using bioinformatics approaches. The RBD-Ab complexes with experimentally resolved structures were grouped into four clusters wit...
In silico analysis of SARS-CoV-2 spike glycoprotein and insights into antibody binding
Research Ideas and Outcomes
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China in December 2019. Since then, COVID-19, the disease caused by SARS-CoV-2, has become a rapidly spreading pandemic that has reached most countries in the world. So far, there are no vaccines or therapeutics to fight this virus. Here, I present an in silico analysis of the virus spike glycoprotein (recently determined at atomic resolution) and provide insights into how antibodies against the 2002 virus SARS-CoV might be modified to neutralize SARS-CoV-2. I ran docking experiments with Rosetta Dock to determine which substitutions in the 80R and m396 antibodies might improve the binding of these to SARS-CoV-2 and used molecular visualization and analysis software, including UCSF Chimera and Rosetta Dock, as well as other bioinformatics tools, including SWISS-MODEL. Supercomputers, including Bridges Large, Stampede and Frontera, were used for macromolecular assemblies and large scale analysis and visual...
ACS Nano
The recent emergence of the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the coronavirus disease 2019 (COVID-19), is causing a global pandemic that poses enormous challenges to global public health and economies. SARS-CoV-2 host cell entry is mediated by the interaction of the viral transmembrane spike glycoprotein (S-protein) with the angiotensin-converting enzyme 2 gene (ACE2), an essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis. Accordingly, this work reports an atomistic-based, reliable in silico structural and energetic framework of the interactions between the receptor-binding domain of the SARS-CoV-2 S-protein and its host cellular receptor ACE2 that provides qualitative and quantitative insights into the main molecular determinants in virus/receptor recognition. In particular, residues D38, K31, E37, K353, and Y41 on ACE2 and Q498, T500, and R403 on the SARS-CoV-2 S-protein receptor-binding domain are determined as true hot spots, contributing to shaping and determining the stability of the relevant protein−protein interface. Overall, these results could be used to estimate the binding affinity of the viral protein to different allelic variants of ACE2 receptors discovered in COVID-19 patients and for the effective structure-based design and development of neutralizing antibodies, vaccines, and protein/protein inhibitors against this terrible new coronavirus.
2020
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) an enveloped, positive-sense single-stranded RNA virus that is responsible for the COVID-19 pandemic. The viral spike is a class I viral fusion glycoprotein that extends from the viral surface and is responsible for viral entry into the host cell, and is the primary target of neutralizing antibodies. However, antibody recognition often involves variable surface epitopes on the spike, and the receptor binding domain (RBD) of the spike hides from immune recognition underneath a glycan shield aside from brief dynamic excursions to search for the host-cell surface receptor ACE2. Using an atomistic model of the glycosylated wild-type spike in the closed and 1-up RBD conformations, we identified specific interactions that stabilize the closed RBD, and mapped the free energy landscape for RBD opening. We characterized a transient pocket associated with a hinge motion during opening of the RBD, suggesting the possibility of al...
Biological Chemistry
The pathogenic agent of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters into human cells through the interaction between the receptor binding domain (RBD) of its spike glycoprotein and the angiotensin-converting enzyme 2 (ACE2) receptor. Efforts have been made towards finding antivirals that block this interaction, therefore preventing infection. Here, we determined the binding affinity of ACE2-derived peptides to the RBD of SARS-CoV-2 experimentally and performed MD simulations in order to understand key characteristics of their interaction. One of the peptides, p6, binds to the RBD of SARS-CoV-2 with nM affinity. Although the ACE2-derived peptides retain conformational flexibility when bound to SARS-CoV-2 RBD, we identified residues T27 and K353 as critical anchors mediating the interaction. New ACE2-derived peptides were developed based on the p6-RBD interface analysis and expecting the native conformation of the ACE2 to be maintained. Furthermore, we foun...
Insights into the structure and dynamics of SARS-CoV-2 spike glycoprotein double mutant L452R-E484Q
3 Biotech
The Receptor Binding Domain (RBD) of SARS-CoV-2, located on the S1 subunit, plays a vital role in the virus binding and its entry into the host cell through angiotensin-converting enzyme 2 (ACE2) receptor. Therefore, understanding the dynamic effects of mutants on the SARS-CoV-2 RBD is essential for discovering drugs to inhibit the virus binding and disrupt its entry into the host cells. A recent study reported a double mutant of SARS-CoV-2, L452R-E484Q, located in the RBD region. Thus, this study employed various computational algorithms and methods to understand the structural impact of both individual variants L452R, E484Q, and the double mutant L452R-E484Q on the native RBD of spike glycoprotein. The effects of the mutations on native RBD structure were predicted by in silico algorithms, which predicted changes in the protein structure and function upon the mutations. Subsequently, molecular dynamics (MD) simulations were employed to understand the conformational stability and functional changes on the RBD upon the mutations. The comparative results of MD simulation parameters displayed that the double mutant induces significant conformational changes in the spike glycoprotein RBD, which may alter its biological functions.
2020
The pandemic outbreak of COVID-19 virus (SARS-CoV-2) has become critical global health issue. The biophysical and structural evidence shows that SARS-CoV-2 spike protein possesses higher binding affinity towards angiotensin-converting enzyme 2 (ACE2) and hemagglutinin-acetylesterase (HE) glycoprotein receptor. Hence, it was selected as a target to generate the potential candidates for the inhibition of HE glycoprotein. The present study focuses on extensive computational approaches which contains molecular docking, ADMET prediction followed by molecular dynamics simulations and free energy calculations. Furthermore, virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin were interact with high affinity. The ADMET prediction revealed pharmacokinetics and drug-likeness properties of top-ranked compounds. Molecular dynamics simulations and bin...