4-Phenylbutyrate (PBA) treatment reduces hyperglycemia and islet amyloid in a mouse model of type 2 diabetes and obesity (original) (raw)

Amyloid‐induced β‐cell dysfunction and islet inflammation are ameliorated by 4‐phenylbutyrate (PBA) treatment

The FASEB Journal, 2017

Human islet amyloid polypeptide (hIAPP) aggregation is associated with b-cell dysfunction and death in type 2 diabetes (T2D). we aimed to determine whether in vivo treatment with chemical chaperone 4-phenylbutyrate (PBA) ameliorates hIAPP-induced b-cell dysfunction and islet amyloid formation. Oral administration of PBA in hIAPP transgenic (hIAPP Tg) mice expressing hIAPP in pancreatic b cells counteracted impaired glucose homeostasis and restored glucose-stimulated insulin secretion. Moreover, PBA treatment almost completely prevented the transcriptomic alterations observed in hIAPP Tg islets, including the induction of genes related to inflammation. PBA also increased b-cell viability and improved insulin secretion in hIAPP Tg islets cultured under glucolipotoxic conditions. Strikingly, PBA not only prevented but even reversed islet amyloid deposition, pointing to a direct effect of PBA on hIAPP. This was supported by in silico calculations uncovering potential binding sites of PBA to monomeric, dimeric, and pentameric fibrillar structures, and by in vitro assays showing inhibition of hIAPP fibril formation by PBA. Collectively, these results uncover a novel beneficial effect of PBA on glucose homeostasis by restoring b-cell function and preventing amyloid formation in mice expressing hIAPP in b cells, highlighting the therapeutic potential of PBA for the treatment of T2D.

Chaperones Ameliorate Beta Cell Dysfunction Associated with Human Islet Amyloid Polypeptide Overexpression

PLoS ONE, 2014

In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP). The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR), perturbing endoplasmic reticulum (ER) homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP) or protein disulfite isomerase (PDI), and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA) or 4-phenylbutyrate (PBA), alleviated ER stress and increased insulin secretion in hIAPPexpressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes

Science, 2006

Endoplasmic reticulum (ER) stress is a key link between obesity, insulin resistance, and type 2 diabetes. Here, we provide evidence that this mechanistic link can be exploited for therapeutic purposes with orally active chemical chaperones. 4-Phenyl butyric acid and taurine-conjugated ursodeoxycholic acid alleviated ER stress in cells and whole animals. Treatment of obese and diabetic mice with these compounds resulted in normalization of hyperglycemia, restoration of systemic insulin sensitivity, resolution of fatty liver disease, and enhancement of insulin action in liver, muscle, and adipose tissues. Our results demonstrate that chemical chaperones enhance the adaptive capacity of the ER and act as potent antidiabetic modalities with potential application in the treatment of type 2 diabetes.

4‐Phenyl butyric acid does not generally reduce glucose levels in rodent models of diabetes

Clinical and Experimental Pharmacology and Physiology, 2010

Summary1. Endoplasmic reticulum (ER) stress plays a role in the pathogenesis of diabetes. The aim of the present study was to investigate the effect of 4‐phenyl butyric acid (PBA), a novel chemical chaperone reducing ER stress, on serum glucose level in different strains of normal and diabetic rodents.2. 4‐Phenyl butyric acid (1 g/kg per day, i.g.) was administered to ob/ob Type 2 diabetic mice, alloxan‐induced Type 1 diabetic mice and hydrocortisone (HC)‐induced Type 2 diabetic mice as well as normal C57BL/6J mice and Kumming mice for 14 days to evaluate its effect on serum glucose levels. In addition, mice were treated simultaneously with PBA (1 g/kg per day) and HC for 9 days to determine its preventive effect against the development of insulin resistance. PBA (0.7 and 1.4 g/kg per day) was administered to non‐obese Type 2 diabetic Goto‐Kakizaki (GK) and normal Wistar‐Kyoto (WKY) rats for 14 and 7 days, respectively, to determine its effects on serum glucose levels.3. 4‐Phenyl bu...

Blockade of islet amyloid polypeptide fibrillation and cytotoxicity by the secretory chaperones 7B2 and proSAAS

FEBS Letters, 2013

The deposition of fibrillated human islet β-cell peptide islet amyloid polypeptide (hIAPP) into amyloid plaques is characteristic of the pathogenesis of islet cell death during type 2 diabetes. We investigated the effects of the neuroendocrine secretory proteins 7B2 and proSAAS on hIAPP fibrillation in vitro and on cytotoxicity. In vitro, 21-kDa 7B2 and proSAAS blocked hIAPP fibrillation. Structure-function studies showed that a central region within 21-kDa 7B2 is important in this effect and revealed the importance of the N-terminal region of proSAAS. Both chaperones blocked the cytotoxic effects of exogenous hIAPP on Rin5f cells; 7B2 generated by overexpression was also effective. ProSAAS and 7B2 may perform a chaperone role as secretory anti-aggregants in normal islet cell function and in type 2 diabetes.

Tauroursodeoxycholate (TUDCA), chemical chaperone, enhances function of islets by reducing ER stress

Biochemical and Biophysical Research Communications, 2010

The exposure to acute or chronic endoplasmic reticulum (ER) stress has been known to induce dysfunction of islets, leading to apoptosis. The reduction of ER stress in islet isolation for transplantation is critical for islet protection. In this study, we investigated whether tauroursodeoxycholate (TUDCA) could inhibit ER stress induced by thapsigargin, and restore the decreased glucose stimulation index of islets. In pig islets, thapsigargin decreased the insulin secretion by high glucose stimulation in a time-dependent manner (1 h, 1.35 ± 0.16; 2 h, 1.21 ± 0.13; 4 h, 1.17 ± 0.16 vs. 0 h, 1.81 ± 0.15, n = 4, p < 0.05, respectively). However, the treatment of TUDCA restored the decreased insulin secretion index induced by thapsigargin (thapsigargin, 1.25 ± 0.12 vs. thapsigargin + TUDCA, 2.13 ± 0.19, n = 5, p < 0.05). Furthermore, the culture of isolated islets for 24 h with TUDCA significantly reduced the rate of islet regression (37.4 ± 5.8% vs. 14.5 ± 6.4%, n = 12, p < 0.05). The treatment of TUDCA enhanced ATP contents in islets (27.2 ± 3.2 pmol/ 20IEQs vs. 21.7 ± 2.8 pmol/20IEQs, n = 9, p < 0.05). The insulin secretion index by high glucose stimulation is also increased by treatment of TUDCA (2.42 ± 0.15 vs. 1.92 ± 0.12, n = 12, p < 0.05). Taken together, we suggest that TUDCA could be a useful agent for islet protection in islet isolation for transplantation.

The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease

Pharmaceutics, 2022

It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in amelioratin...

Factors That Contribute to hIAPP Amyloidosis in Type 2 Diabetes Mellitus

Life

Cases of Type 2 Diabetes Mellitus (T2DM) are increasing at an alarming rate due to the rise in obesity, sedentary lifestyles, glucose-rich diets and other factors. Numerous studies have increasingly illustrated the pivotal role that human islet amyloid polypeptide (hIAPP) plays in the pathology of T2DM through damage and subsequent loss of pancreatic β-cell mass. HIAPP can misfold and form amyloid fibrils which are preceded by pre-fibrillar oligomers and monomers, all of which have been linked, to a certain extent, to β-cell cytotoxicity through a range of proposed mechanisms. This review provides an up-to-date summary of recent progress in the field, highlighting factors that contribute to hIAPP misfolding and aggregation such as hIAPP protein concentration, cell stress, molecular chaperones, the immune system response and cross-seeding with other amyloidogenic proteins. Understanding the structure of hIAPP and how these factors affect amyloid formation will help us better understa...