The evolution of reactive oxygen species metabolism (original) (raw)
Related papers
1 Generation Mechanisms of Reactive Oxygen Species in the Plant Cell : An Overview
2017
During the course of evolution, life on the Earth started in a reducing environment and about 3.2 billion years ago, the reducing environment changed to an oxidizing one due to the appearance and proliferation of the first oxygen‐evolving photosynthetic organisms, that is, cyanobacteria (Schopf et al., 2007). In other words, the cyanobacteria are considered to be the first organisms to release oxygen in the environment by means of an oxygen evolving complex (OEC) (Bekker et al., 2004). The outermost orbital of the dioxygen (O2) molecule has two unpaired electrons having same spin quantum number, and this enables O2 to accept electrons one at a time efficiently, and generate the reactive oxygen species (ROS). Out of the total O2 utilized by plants, 1% is diverted to produce ROS in various cell organelles (del Rio et al., 2002). Reactive oxygen species are essential by‐products of all aerobic organisms that are produced during normal metabolic processes as well as under stress conditi...
Reactive oxygen gene network of plants
2004
Reactive oxygen species (ROS) control many different processes in plants. However, being toxic molecules, they are also capable of injuring cells. How this conflict is resolved in plants is largely unknown. Nonetheless, it is clear that the steady-state level of ROS in cells needs to be tightly regulated. In Arabidopsis, a network of at least 152 genes is involved in managing the level of ROS. This network is highly dynamic and redundant, and encodes ROS-scavenging and ROS-producing proteins.
Reactive oxygen species generation and signaling in plants
Plant Signaling & Behavior, 2012
The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS.
Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants
Frontiers in Plant Science, 2021
Reactive oxygen species (ROS) are signaling molecules essential for plant responses to abiotic and biotic stimuli as well as for multiple developmental processes. They are produced as byproducts of aerobic metabolism and are affected by adverse environmental conditions. The ROS content is controlled on the side of their production but also by scavenging machinery. Antioxidant enzymes represent a major ROS-scavenging force and are crucial for stress tolerance in plants. Enzymatic antioxidant defense occurs as a series of redox reactions for ROS elimination. Therefore, the deregulation of the antioxidant machinery may lead to the overaccumulation of ROS in plants, with negative consequences both in terms of plant development and resistance to environmental challenges. The transcriptional activation of antioxidant enzymes accompanies the long-term exposure of plants to unfavorable environmental conditions. Fast ROS production requires the immediate mobilization of the antioxidant defen...
The Language of Reactive Oxygen Species Signaling in Plants
Journal of Botany, 2012
Reactive oxygen species (ROS) are astonishingly versatile molecular species and radicals that are poised at the core of a sophisticated network of signaling pathways of plants and act as core regulator of cell physiology and cellular responses to environment. ROS are continuously generated in plants as an inevitable consequence of redox cascades of aerobic metabolism. In one hand, plants are surfeited with the mechanism to combat reactive oxygen species, in other circumstances, plants appear to purposefully generate (oxidative burst) and exploit ROS or ROS-induced secondary breakdown products for the regulation of almost every aspect of plant biology, from perception of environmental cues to gene expression. The molecular language associated with ROS-mediated signal transduction, leading to modulation in gene expression to be one of the specific early stress response in the acclamatory performance of the plant. They may even act as “second messenger” modulating the activities of spe...
Molecular Regulation and Evolution of Redox Homeostasis in Photosynthetic Machinery
Antioxidants
The recent advances in plant biology have significantly improved our understanding of reactive oxygen species (ROS) as signaling molecules in the redox regulation of complex cellular processes. In plants, free radicals and non-radicals are prevalent intra- and inter-cellular ROS, catalyzing complex metabolic processes such as photosynthesis. Photosynthesis homeostasis is maintained by thiol-based systems and antioxidative enzymes, which belong to some of the evolutionarily conserved protein families. The molecular and biological functions of redox regulation in photosynthesis are usually to balance the electron transport chain, photosystem II, photosystem I, mesophyll and bundle sheath signaling, and photo-protection regulating plant growth and productivity. Here, we review the recent progress of ROS signaling in photosynthesis. We present a comprehensive comparative bioinformatic analysis of redox regulation in evolutionary distinct photosynthetic cells. Gene expression, phylogenie...
Reactive oxygen species in plant development
Development, 2018
Reactive oxygen species (ROS) are produced by metabolic pathways in almost all cells. As signaling components, ROS are best known for their roles in abiotic and biotic stress-related events. However, recent studies have revealed that they are also involved in numerous processes throughout the plant life cycle, from seed development and germination, through to root, shoot and flower development. Here, we provide an overview of ROS production and signaling in the context of plant growth and development, highlighting the key functions of ROS and their interactions with plant phytohormonal networks.
Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms
2011
Reactive oxygen species (ROS) are a by-product of normal cell metabolism in plants; however, under stress conditions, the balance between production and elimination is disturbed. ROS rapidly inactivate enzymes, damage vital cellular organelles in plants, and destroy membranes by inducing the degradation of pigments, proteins, lipids and nucleic acids which ultimately results in cell death. In addition to degrading macromolecules, ROS act as a diffusible signal in signal transduction pathways and also as a secondary messenger in various developmental pathways in plants. Plants possess a complex battery of enzymatic and non-enzymatic antioxidative defense systems that can protect cells from oxidative damage and scavenge harmful ROS that are produced in excess of those normally required for various metabolic reactions. The mechanism by which ROS is generated in aerobic organisms is poorly understood. This review paper describes the generation, origin, and role of ROS in signal transduction and cell death, and the removal of ROS by antioxidative defense systems in plants during various developmental pathways.
Reactive oxygen signaling and abiotic stress
Physiologia Plantarum, 2008
Reactive oxygen species (ROS) play a dual role in plant biology acting on the one hand as important signal transduction molecules and on the other as toxic by-products of aerobic metabolism that accumulate in cells during different stress conditions. Because of their toxicity as well as their important signaling role, the level of ROS in cells is tightly controlled by a vast network of genes termed the ‘ROS gene network’. Using mutants deficient in key ROS-scavenging enzymes, we have defined a signaling pathway that is activated in cells in response to ROS accumulation. Interestingly, many of the key players in this pathway, including different zinc finger proteins and WRKY transcription factors, are also central regulators of abiotic stress responses involved in temperature, salinity and osmotic stresses. Here, we describe our recent findings and discuss how ROS integrate different signals originating from different cellular compartments during abiotic stress.