Pathway analysis of IMC (original) (raw)
Related papers
Expanded Coverage of Human Pathways
2008
Reactome (http://www.reactome.org) is an expertauthored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entitylevel pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactome's data content and software can all be freely used and redistributed under open source terms. EXPANDED COVERAGE OF HUMAN PATHWAYS The current release of Reactome (version 26, September 2008) covers approximately 12.5% of 20 000 curated UniProt human proteins, a 2.7-fold increase over the last three years. Forty-six major domains of human
Pathguide: a pathway resource list
Nucleic Acids Research, 2006
Pathguide: the Pathway Resource List (http://pathguide. org) is a meta-database that provides an overview of more than 190 web-accessible biological pathway and network databases. These include databases on metabolic pathways, signaling pathways, transcription factor targets, gene regulatory networks, genetic interactions, protein���compound interactions, and protein���protein interactions. The listed databases are maintained by diverse groups in different locations and the information in them is derived ...
PathVisio 3: an extendable pathway analysis toolbox
PLoS computational biology, 2015
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways. Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application. PathVisio can...
Pathway Commons 2019 Update: integration, analysis and exploration of pathway data
Nucleic Acids Research, 2019
Pathway Commons (https://www.pathwaycommons.org) is an integrated resource of publicly available information about biological pathways including biochemical reactions, assembly of biomolecular complexes, transport and catalysis events and physical interactions involving proteins, DNA, RNA, and small molecules (e.g. metabolites and drug compounds). Data is collected from multiple providers in standard formats, including the Biological Pathway Exchange (BioPAX) language and the Proteomics Standards Initiative Molecular Interactions format, and then integrated. Pathway Commons provides biologists with (i) tools to search this comprehensive resource, (ii) a download site offering integrated bulk sets of pathway data (e.g. tables of interactions and gene sets), (iii) reusable software libraries for working with pathway information in several programming languages (Java, R, Python and Javascript) and (iv) a web service for programmatically querying the entire dataset. Visualization of pat...
Pathway Analysis: State of the Art
Pathway analysis is a set of widely used tools for research in life sciences intended to give meaning to high-throughput biological data. The methodology of these tools settles in the gathering and usage of knowledge that comprise biomolecular functioning, coupled with statistical testing and other algorithms. Despite their wide employment, pathway analysis foundations and overall background may not be fully understood, leading to misinterpretation of analysis results. This review attempts to comprise the fundamental knowledge to take into consideration when using pathway analysis as a hypothesis generation tool. We discuss the key elements that are part of these methodologies, their capabilities and current deficiencies. We also present an overview of current and all-time popular methods, highlighting different classes across them. In doing so, we show the exploding diversity of methods that pathway analysis encompasses, point out commonly overlooked caveats, and direct attention to a potential new class of methods that attempt to zoom the analysis scope to the sample scale.
Human Genomics, 2013
The RGD Pathway Portal provides pathway annotations for rat, human and mouse genes and pathway diagrams and suites, all interconnected via the pathway ontology. Diagram pages present the diagram and description, with diagram objects linked to additional resources. A newly-developed dual-functionality web application composes the diagram page. Curators input the description, diagram, references and additional pathway objects. The application combines these with tables of rat, human and mouse pathway genes, including genetic information, analysis tool and reference links, and disease, phenotype and other pathway annotations to pathway genes. The application increases the information content of diagram pages while expediting publication.
PathBuilder - open source software for annotating and developing pathway resources
Bioinformatics/computer Applications in The Biosciences, 2009
We have developed PathBuilder, an open-source web application to annotate biological information pertaining to signaling pathways and to create web-based pathway resources. PathBuilder enables annotation of molecular events including protein-protein interactions, enzyme-substrate relationships and protein translocation events either manually or through automated importing of data from other databases. Salient features of PathBuilder include automatic validation of data formats, built-in modules for visualization of pathways, automated import of data from other pathway resources, export of data in several standard data exchange formats and an application programming interface for retrieving existing pathway datasets. Availability: PathBuilder is freely available for download at http:// pathbuilder.sourceforge.net/ under the terms of GNU lesser general public license (LGPL: http://www.gnu.org/copyleft/lesser.html). The software is platform independent and has been tested on Windows and Linux platforms.
doi:10.1093/nar/gkn653 PID: the Pathway Interaction Database
2008
The Pathway Interaction Database (PID, http://pid. nci.nih.gov) is a freely available collection of curated and peer-reviewed pathways composed of human molecular signaling and regulatory events and key cellular processes. Created in a collaboration between the US National Cancer Institute and Nature Publishing Group, the database serves as a research tool for the cancer research community and others interested in cellular pathways, such as neuroscientists, developmental biologists and immunologists. PID offers a range of search features to facilitate pathway exploration. Users can browse the predefined set of pathways or create interaction network maps centered on a single molecule or cellular process of interest. In addition, the batch query tool allows users to upload long list(s) of molecules, such as those derived from microarray experiments, and either overlay these molecules onto predefined pathways or visualize the complete molecular connectivity map. Users can also download molecule lists, citation lists and complete database content in extensible markup language (XML) and Biological Pathways Exchange (BioPAX) Level 2 format. The database is updated with new pathway content every month and supplemented by specially commissioned articles on the practical uses of other relevant online tools.
Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges
PLoS Computational Biology, 2012
Pathway analysis has become the first choice for gaining insight into the underlying biology of differentially expressed genes and proteins, as it reduces complexity and has increased explanatory power. We discuss the evolution of knowledge base-driven pathway analysis over its first decade, distinctly divided into three generations. We also discuss the limitations that are specific to each generation, and how they are addressed by successive generations of methods. We identify a number of annotation challenges that must be addressed to enable development of the next generation of pathway analysis methods. Furthermore, we identify a number of methodological challenges that the next generation of methods must tackle to take advantage of the technological advances in genomics and proteomics in order to improve specificity, sensitivity, and relevance of pathway analysis.