Comparative Performance of the NanoScan and the Classic SMPS in Determining N95 Filtering Facepiece Efficiency Against Nanoparticles (original) (raw)

Validation of a Laboratory Test Bench for the Efficiency of an N95 Filtering Face Piece, using Simulated Occupational Exposure

Journal of Environmental & Analytical Toxicology, 2015

Ultrafine particles (<100 nm) have special properties that nanotechnologies seek to exploit. However, due to their nanometric scale, these particles can be deposited in the lungs and cause damage. Based on current knowledge, occupational exposure to nanoparticles occurs mainly in workplaces handling nanomaterials, or when certain processes generate them indirectly. However, there are currently no limit values for exposure to ultrafine particles. To limit worker exposure, respiratory protective devices (RPD) are generally used. The aim of this study was to determine if (a) a laboratory test bench and (b) a simulated occupational exposure setup were reliable representations undesirable exposure in workplace. Thus, two tests benches were used to compare on the one hand conventional measurements and on the other hand sanding-simulation process measurements. NaCl aerosols were generated and then used to measure penetration with constant flow at 43 L/min, 85 L/min and 135 L/min, and one cyclic flow defined by 85 L/min as the mean inhalation flow. The results showed that initial penetrations were less than 5%, as required by the certification. The results also showed that there was a high correlation between the two penetration measurements. One also notes that the measurements had a slightly higher maximum penetration with a charge-neutralized NaCl aerosol than with an un-neutralized NaCl aerosol. The charged-neutralized particles constituted the worst-case scenario exposure.

Development of a Procedure to Measure the Effectiveness of N95 Respirator Filters against Nanoparticles

2012

There is an increasing concern about the potential health hazards posed to workers exposed to inhalation of nanoparticles (NPs). Common sources of nanoparticles in working environments include fumes and exhausts from different processes like laser ablation and milling. Nanoparticles have potential toxic properties: a high particle surface area, number concentration, and surface reactivity. Inhalation, the most common route of nanoparticle exposure, has been shown to cause adverse effects on pulmonary functions, and the deposited particles in the lung can be translocated to the blood system by passing through the pulmonary protection barriers. Filtration is the simplest and most common method of aerosol control. It is widely used in mechanical ventilation and respiratory protection. However, concerns have been raised regarding the effectiveness of filters for capturing nanoparticles.

Inhalation exposure to various nanoparticles in work environment—contextual information and results of measurements

Journal of Nanoparticle Research

Outside the wide range of potential benefits, the use of nanomaterials can endanger human health, mostly through skin contact and the risk of inhalation. This article presents the results of harmonized measurements with contextual information on the emission of nanoparticles during the manufacturing and application of nanotechnology products. The purpose of the research was to investigate the actual levels of exposure to nano-objects in real working conditions in chosen Polish companies. Measurements were carried out in various workplaces: during silver nanoparticle synthesis, production of thin nanocarbon layers, 3D-printing with the use of a nanohydroxyapatite-polymer composite and the production of special seals from thin glass foils. Research was conducted on the basis of task-based measurements and offline microscopic analysis. Real-time particle DiSCmini counters were used to determine the nano-object concentration during different processes and events: samplers for collecting...

Comparison of nanoparticle measurement instruments for occupational health applications

Journal of Nanoparticle Research, 2012

Nanoparticles are used in many applications because of their novel properties compared to bulk material. A growing number of employees are working with nanomaterials and their exposure to nanoparticles trough inhalation must be evaluated and monitored continuously. However, there is an ongoing debate in the scientific literature about what are the relevant parameters to measure to evaluate exposure to level. In this study, three types of nanoparticles (ammonium sulphate, synthesised TiO 2 agglomerates and aerosolised TiO 2 powder, modes in a range of 30-140 nm mobility size) were measured with commonly used aerosol measurement instruments: scanning and fast mobility particle sizers (SMPS, FMPS), electrical low pressure impactor (ELPI), condensation particle counter (CPC) together with nanoparticle surface area monitor (NSAM) to achieve information about the interrelations of the outputs of the instruments. In addition, the ease of use of these instruments was evaluated. Differences between the results of different instruments can mainly be attributed to the nature of test particles. For spherical ammonium sulphate nanoparticles, the data from the instruments were in good agreement while larger differences were observed for particles with more complex morphology, the TiO 2 agglomerates and powder. For instance, the FMPS showed a smaller particle size, a higher number concentration and a narrower size distribution compared with the SMPS for TiO 2 particles. Thus, the type of the nanoparticle was observed to influence the data obtained from these different instruments. Therefore, care and expertise are essential when interpreting results from aerosol measurement instruments to estimate nanoparticle concentrations and properties.

Novel Active Personal Nanoparticle Sampler for the Exposure Assessment of Nanoparticles in Workplaces

Environmental Science & Technology, 2012

A novel active personal nanoparticle sampler (PENS), which enables the collection of both respirable particulate mass (RPM) and nanoparticles (NPs) simultaneously, was developed to meet the critical demand for personal sampling of engineered nanomaterials (ENMs) in workplaces. The PENS consists of a respirable cyclone and a micro-orifice impactor with the cutoff aerodynamic diameter (d pa50 ) of 4 μm and 100 nm, respectively. The micro-orifice impactor has a fixed micro-orifice plate (137 nozzles of 55 μm in the inner diameter) and a rotating, silicone oil-coated Teflon filter substrate at 1 rpm to achieve a uniform particle deposition and avoid solid particle bounce. A final filter is used after the impactor to collect the NPs. Calibration results show that the d pa50 of the respirable cyclone and the micro-orifice impactor are 3.92 ± 0.22 μm and 101.4 ± 0.1 nm, respectively. The d pa50 at the loaded micro-Al 2 O 3 mass of 0.36−3.18 mg is shifted to 102.9−101.2 nm, respectively, while it is shifted to 98.9−97.8 nm at the loaded nano-TiO 2 mass of 0.92−1.78 mg, respectively. That is, the shift of d pa50 due to solid particle loading is small if the PENS is not overloaded. Both NPs and RPM concentrations were found to agree well with those of the IOSH respirable cyclone and MOUDI. By using the present PENS, the collected samples can be further analyzed for chemical species concentrations besides gravimetric analysis to determine the actual exposure concentrations of ENMs in both RPM and NPs fractions in workplaces, which are often influenced by the background or incident pollution sources.

Workplace exposure to nanoparticles and the application of provisional nanoreference values in times of uncertain risks

2012

ABSTRACT Nano reference values (NRVs) for occupational use of nanomaterials were tested as provisional substitute for Occupational Exposure Limits (OELs). NRVs can be used as provisional limit values until Health-Based OELs or derived no-effect levels (DNEL) become available. NRVs were defined for 8 h periods (time weighted average) and for short-term exposure periods (15 min-time weighted average). To assess the usefulness of these NRVs, airborne number concentrations of nanoparticles (NPs) in the workplace environment were measured during paint manufacturing, electroplating, light equipment manufacturing, non-reflective glass production, production of pigment concentrates and car refinishing. Activities monitored were handling of solid engineered NPs (ENP), abrasion, spraying and heating during occupational use of nanomaterials (containing ENPs) and machining nanosurfaces. The measured concentrations are often presumed to contain ENPs as well as process-generated NPs (PGNP). The PGNP are found to be a significant source for potential exposure and cannot be ignored in risk assessment. Levels of NPs identified in workplace air were up to several millions of nanoparticles/cm3. Conventional components in paint manufacturing like CaCO3 and talc may contain a substantial amount of nanosized particulates giving rise to airborne nanoparticle concentrations. It is argued that risk assessments carried out for e.g. paint manufacturing processes using conventional non-nano components should take into account potential nanoparticle emissions as well. The concentrations measured were compared with particle-based NRVs and with mass-based values that have also been proposed for workers protection. It is concluded that NRVs can be used for risk management for handling or processing of nanomaterials at workplaces provided that the scope of NRVs is not limited to ENPs only, but extended to the exposure to process-generated NPs as well.

From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects

Journal of Nanoparticle Research, 2009

In the past few years, an increasing number of studies on workplace air measurements on manufactured nano-materials and-objects have been published. Most of the studies had a more explorative character, so a direct interpretation to workers'' exposure for a given exposure situation, activity, or process is not a straightforward process. In general, the studies use a quite similar package of devices for near real-time monitoring of particle number-and mass concentration in size ranges \100 nm up to 10 lm, and the collection of samples for off-line characterization of air samples. Various approaches for addressing background concentrations and its use to indicate the potential for exposure to nano-objects could be observed. Within the EUsponsored NANOSH project, a harmonized approach for measurement strategy, data analysis and reporting was developed. In addition to time/activity-concentration profiles as reported by most studies, this approach enables a first step to estimate the potential for exposure to manufactured nano-objects, more quantitatively. The NANOSH data will be collated into a base, which may form the starting point for a harmonized database facilitating overall analysis in near future, to derive estimates for exposure for several exposure situations.

Video Exposure Monitoring as Part of a Strategy to Assess Exposure to Nanoparticles

Annals of Occupational Hygiene, 2011

Objectives: There is a growing awareness of the potential risks for human health of exposure to ultrafine particles or nanoparticles. In that context, workplace air measurements become important, and various strategies have been developed to monitor exposure. In addition, observations and time/activity registrations are part of the exposure assessment strategy in many studies. Video exposure monitoring (VEM) can be of added value in these strategies. VEM combines exposure data with simultaneous video pictures of the process. Methods: The PIMEX method (Picture Mix Exposure) was used as the VEM studied. The possibility to combine PIMEX and measurement instruments for nanoparticles was the object of this study. The starting point was a review of available instruments for workplace air measurements of nanoparticles. Publications of strategies to assess exposure to nanoparticles were also studied to review whether observations were part of these strategies. Finally, a technical review of combining PIMEX and the compatible measurement instruments was undertaken and explored as part of the strategy to assess exposure to nanoparticles. Results: A variety of instruments are used to measure nanoparticles. One category is (near) real-time monitoring instruments, which determine numbers and particle size distribution or surface area concentration. Other instruments require sample collection in order to characterize the nanoparticles chemically and physically by microscopic analyses and/or elemental analyses. Only some of these instruments are technically compatible with PIMEX. With the PIMEX2008 version 1.02 software, it is possible to synchronize up to four different measuring instruments simultaneously with the video recording. Conclusions: PIMEX as a VEM method can be a useful tool as part of the strategy to assess exposure to nanoparticles. It can also be of value for other purposes like training, education, and risk communication. The possibility to synchronize more than one measuring instrument can be useful to simultaneously monitor different targets in the workplace, e.g. worker exposure in the breathing zone and background concentration.