Kinetic simulations of strongly magnetized parallel shocks: deviations from MHD jump conditions (original) (raw)

On the formation and properties of fluid shocks and collisionless shock waves in astrophysical plasmas

Journal of Plasma Physics, 2018

When two plasmas collide, their interaction can be mediated by collisionless plasma instabilities or binary collisions between particles of each shell. By comparing the maximum growth rate of the collisionless instabilities with the collision frequency between particles of the shells, we determine the critical density separating the collisionless formation from the collisional formation of the resulting shock waves. This critical density is also the density beyond which the shock downstream is field free, as plasma instabilities do not have time to develop electromagnetic patterns. We further determine the conditions on the shells initial density and velocity for the downstream to be collisional. If these quantities fulfil the determined conditions, the collisionality of the downstream also prevents the shock from accelerating particles or generating strong magnetic fields. We compare the speed of sound with the relative speed of collision between the two shells, thus determining th...

Direct evidence of nonstationary collisionless shocks in space plasmas

Science Advances

Collisionless shocks are ubiquitous throughout the universe: around stars, supernova remnants, active galactic nuclei, binary systems, comets, and planets. Key information is carried by electromagnetic emissions from particles accelerated by high Mach number collisionless shocks. These shocks are intrinsically nonstationary, and the characteristic physical scales responsible for particle acceleration remain unknown. Quantifying these scales is crucial, as it affects the fundamental process of redistributing upstream plasma kinetic energy into other degrees of freedom—particularly electron thermalization. Direct in situ measurements of nonstationary shock dynamics have not been reported. Thus, the model that best describes this process has remained unknown. Here, we present direct evidence demonstrating that the transition to nonstationarity is associated with electron-scale field structures inside the shock ramp.

The plasma physics of shock acceleration

Space Science Reviews, 1991

The notion that plasma shocks in astrophysical settings can and do accelerate charged particles to high energies is not a new one. However, in recent years considerable progress has been achieved in understanding the role particle acceleration plays both in astrophysics and in the shock process itself. In this paper we briefly review the history and theory of shock acceleration, paying particular attention to theories of parallel shocks which include the backreaction of accelerated particles on the shock structure. We discuss in detail the work that computer simulations, both plasma and Monte Carlo, are playing in revealing how thermal ions interact with shocks and how particle acceleration appears to be an inevitable and necessary part of the basic plasma physics that governs collisionless shocks. We briefly describe some of the outstanding problems that still confront theorists and observers in this field.

Oblique MHD shocks: space-like and time-like

Shock waves constitute discontinuities in matter which are relevant in studying the plasma behaviour in astrophysical scenarios and in heavy-ion collision. They can produce conical emission in relativistic collisions and are also thought to be the mechanism behind the acceleration of energetic particles in active galactic nuclei and gamma ray bursts. The shocks are mostly hydrodynamic shocks. In a magnetic background they become magnetohydrodynamic (MHD) shocks. For that reason we study the space-like and time-like shock discontinuity in a magnetic plasma. The shocks induce a phase transition in the plasma, here assuming a transition from hadron to quarks. The MHD conservation conditions are derived across the shock. The conservation conditions are solved for downstream velocities and flow angles for given upstream variables. The shock conditions are solved at different baryon densities. For the space-like shocks the anisotropy in the downstream velocity arises due to the magnetic f...