Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge (original) (raw)

Integrative disease classification based on cross-platform microarray data

BMC Bioinformatics, 2009

Background Disease classification has been an important application of microarray technology. However, most microarray-based classifiers can only handle data generated within the same study, since microarray data generated by different laboratories or with different platforms can not be compared directly due to systematic variations. This issue has severely limited the practical use of microarray-based disease classification. Results In this study, we tested the feasibility of disease classification by integrating the large amount of heterogeneous microarray datasets from the public microarray repositories. Cross-platform data compatibility is created by deriving expression log-rank ratios within datasets. One may then compare vectors of log-rank ratios across datasets. In addition, we systematically map textual annotations of datasets to concepts in Unified Medical Language System (UMLS), permitting quantitative analysis of the phenotype "distance" between datasets and au...

Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value

Bioinformatics/computer Applications in The Biosciences, 2008

In the context of clinical bioinformatics methods are needed for assessing the additional predictive value of microarray data compared to simple clinical parameters alone. Such methods should also provide an optimal prediction rule making use of all potentialities of both types of data: they should ideally be able to catch subtypes which are not identified by clinical parameters alone. Moreover, they should address the question of the additional predictive value of microarray data in a fair framework. Results: We propose a novel but simple two-step approach based on random forests and PLS dimension reduction embedding the idea of pre-validation suggested by Tibshirani and colleagues which is based on an internal cross-validation for avoiding overfitting. Our approach is fast, flexible and can be used both for assessing the overall additional significance of the microarray data and for building optimal hybrid classification rules. Its efficiency is demonstrated through simulations and an application to breast cancer and colorectal cancer data. Availability: Our method is implemented in the freely available R package 'MAclinical' which can be downloaded from

A summer with genes : simple disease classification from microarray data

2015

In this article we report on the work carried out within the framework of a summer project, part-funded by an IMA small grant, in which an undergraduate student (the second author of this manuscript) developed and implemented methodology for disease classification from gene expression microarray data. While the original motivation for this study was the development of a correlation threshold for gene filtering, a general outcome of this research was that, using very simple statistical techniques (essentially at undergraduate level) but solid state-of--the-art validation routines, good classification accuracies can be obtained using relatively small-sized gene signatures. We applied the techniques on expression data for breast cancer tumour subtype classification, as well as for prediction of the presence or absence of Irritable Bowel Syndrome (IBS).

Outcome prediction based on microarray analysis: a critical perspective on methods

BMC Bioinformatics, 2009

Background: Information extraction from microarrays has not yet been widely used in diagnostic or prognostic decision-support systems, due to the diversity of results produced by the available techniques, their instability on different data sets and the inability to relate statistical significance with biological relevance. Thus, there is an urgent need to address the statistical framework of microarray analysis and identify its drawbacks and limitations, which will enable us to thoroughly compare methodologies under the same experimental setup and associate results with confidence intervals meaningful to clinicians. In this study we consider gene-selection algorithms with the aim to reveal inefficiencies in performance evaluation and address aspects that can reduce uncertainty in algorithmic validation. Results: A computational study is performed related to the performance of several gene selection methodologies on publicly available microarray data. Three basic types of experimental scenarios are evaluated, i.e. the independent testset and the 10-fold cross-validation (CV) using maximum and average performance measures. Feature selection methods behave differently under different validation strategies. The performance results from CV do not mach well those from the independent test-set, except for the support vector machines (SVM) and the least squares SVM methods. However, these wrapper methods achieve variable (often low) performance, whereas the hybrid methods attain consistently higher accuracies. The use of an independent test-set within CV is important for the evaluation of the predictive power of algorithms. The optimal size of the selected gene-set also appears to be dependent on the evaluation scheme. The consistency of selected genes over variation of the training-set is another aspect important in reducing uncertainty in the evaluation of the derived gene signature. In all cases the presence of outlier samples can seriously affect algorithmic performance. Conclusion: Multiple parameters can influence the selection of a gene-signature and its predictive power, thus possible biases in validation methods must always be accounted for. This paper illustrates that independent test-set evaluation reduces the bias of CV, and case-specific measures reveal stability characteristics of the gene-signature over changes of the training set. Moreover, frequency measures on gene selection address the algorithmic consistency in selecting the same gene signature under different training conditions. These issues contribute to the development of an objective evaluation framework and aid the derivation of statistically consistent gene signatures that could eventually be correlated with biological relevance. The benefits of the proposed framework are supported by the evaluation results and methodological comparisons performed for several gene-selection algorithms on three publicly available datasets.

geneCommittee: a web-based tool for extensively testing the discriminatory power of biologically relevant gene sets in microarray data classification

BMC Bioinformatics, 2014

The diagnosis and prognosis of several diseases can be shortened through the use of different large-scale genome experiments. In this context, microarrays can generate expression data for a huge set of genes. However, to obtain solid statistical evidence from the resulting data, it is necessary to train and to validate many classification techniques in order to find the best discriminative method. This is a time-consuming process that normally depends on intricate statistical tools. Results: geneCommittee is a web-based interactive tool for routinely evaluating the discriminative classification power of custom hypothesis in the form of biologically relevant gene sets. While the user can work with different gene set collections and several microarray data files to configure specific classification experiments, the tool is able to run several tests in parallel. Provided with a straightforward and intuitive interface, geneCommittee is able to render valuable information for diagnostic analyses and clinical management decisions based on systematically evaluating custom hypothesis over different data sets using complementary classifiers, a key aspect in clinical research.

Outcome prediction based on microarray analysis: a critical

2009

Background: Information extraction from microarrays has not yet been widely used in diagnostic or prognostic decision-support systems, due to the diversity of results produced by the available techniques, their instability on different data sets and the inability to relate statistical significance with biological relevance. Thus, there is an urgent need to address the statistical framework of microarray analysis and identify its drawbacks and limitations, which will enable us to thoroughly compare methodologies under the same experimental setup and associate results with confidence intervals meaningful to clinicians. In this study we consider gene-selection algorithms with the aim to reveal inefficiencies in performance evaluation and address aspects that can reduce uncertainty in algorithmic validation. Results: A computational study is performed related to the performance of several gene selection methodologies on publicly available microarray data. Three basic types of experimental scenarios are evaluated, i.e. the independent testset and the 10-fold cross-validation (CV) using maximum and average performance measures. Feature selection methods behave differently under different validation strategies. The performance results from CV do not mach well those from the independent test-set, except for the support vector machines (SVM) and the least squares SVM methods. However, these wrapper methods achieve variable (often low) performance, whereas the hybrid methods attain consistently higher accuracies. The use of an independent test-set within CV is important for the evaluation of the predictive power of algorithms. The optimal size of the selected gene-set also appears to be dependent on the evaluation scheme. The consistency of selected genes over variation of the training-set is another aspect important in reducing uncertainty in the evaluation of the derived gene signature. In all cases the presence of outlier samples can seriously affect algorithmic performance. Conclusion: Multiple parameters can influence the selection of a gene-signature and its predictive power, thus possible biases in validation methods must always be accounted for. This paper illustrates that independent test-set evaluation reduces the bias of CV, and case-specific measures reveal stability characteristics of the gene-signature over changes of the training set. Moreover, frequency measures on gene selection address the algorithmic consistency in selecting the same gene signature under different training conditions. These issues contribute to the development of an objective evaluation framework and aid the derivation of statistically consistent gene signatures that could eventually be correlated with biological relevance. The benefits of the proposed framework are supported by the evaluation results and methodological comparisons performed for several gene-selection algorithms on three publicly available datasets.

Consistency of predictive signature genes and classifiers generated using different microarray platforms

The Pharmacogenomics Journal, 2010

Microarray-based classifiers and associated signature genes generated from various platforms are abundantly reported in the literature; however, the utility of the classifiers and signature genes in cross-platform prediction applications remains largely uncertain. As part of the MicroArray Quality Control Phase II (MAQC-II) project, we show in this study 80-90% crossplatform prediction consistency using a large toxicogenomics data set by illustrating that: (1) the signature genes of a classifier generated from one platform can be directly applied to another platform to develop a predictive classifier; (2) a classifier developed using data generated from one platform can accurately predict samples that were profiled using a different platform. The results suggest the potential utility of using published signature genes in cross-platform applications and the possible adoption of the published classifiers for a variety of applications. The study reveals an opportunity for possible translation of biomarkers identified using microarrays to clinically validated non-array gene expression assays.

Maximizing biomarker discovery by minimizing gene signatures

2011

Background: The use of gene signatures can potentially be of considerable value in the field of clinical diagnosis. However, gene signatures defined with different methods can be quite various even when applied the same disease and the same endpoint. Previous studies have shown that the correct selection of subsets of genes from microarray data is key for the accurate classification of disease phenotypes, and a number of methods have been proposed for the purpose. However, these methods refine the subsets by only considering each single feature, and they do not confirm the association between the genes identified in each gene signature and the phenotype of the disease. We proposed an innovative new method termed Minimize Feature's Size (MFS) based on multiple level similarity analyses and association between the genes and disease for breast cancer endpoints by comparing classifier models generated from the second phase of MicroArray Quality Control (MAQC-II), trying to develop effective meta-analysis strategies to transform the MAQC-II signatures into a robust and reliable set of biomarker for clinical applications. Results: We analyzed the similarity of the multiple gene signatures in an endpoint and between the two endpoints of breast cancer at probe and gene levels, the results indicate that disease-related genes can be preferably selected as the components of gene signature, and that the gene signatures for the two endpoints could be interchangeable. The minimized signatures were built at probe level by using MFS for each endpoint. By applying the approach, we generated a much smaller set of gene signature with the similar predictive power compared with those gene signatures from MAQC-II. Conclusions: Our results indicate that gene signatures of both large and small sizes could perform equally well in clinical applications. Besides, consistency and biological significances can be detected among different gene signatures, reflecting the studying endpoints. New classifiers built with MFS exhibit improved performance with both internal and external validation, suggesting that MFS method generally reduces redundancies for features within gene signatures and improves the performance of the model. Consequently, our strategy will be beneficial for the microarray-based clinical applications.