Performance and Pollution Control Analysis of Municipal Solid Waste Incinerator Type Fluidized Bed (original) (raw)

Development and Performance Evaluation of a Small Scale Municipal Solid Waste Incineration Plant

2021

This study presents the design and testing of a waste-to-energy plant by incineration of small scale municipal solid waste to produce steam for electricity production. The average total waste generated within the study area was found to be 55,800kg/day, with an estimated calorific value of 13,958kJ/kg. The waste samples were collected, dried, shredded and weighed in order to reduce the moisture content to the acceptable minimum and decreases the surface area of the sample that will allow easier penetration of heat. The incinerator was designed using CATIA-5 software. The key performance indices of the developed plant are maximum furnace temperature, residence time, mass flow rate, steam pressures and amount of steam generated keeping the mass of waste constant per test but varying the air flow. The moving grate is inclined at an angle of 12° while the volume of the incineration combustion chamber was calculated to be 0.267m3. 150kg of small scale waste was fed into the combustion ch...

CHARACTERISTICS OF ENERGY FLOW IN MUNICIPAL SOLID WASTE INCINERATOR

The energy flow of an existing municipal solid waste incinerator (MWI) was analyzed for better understanding of the energy balance and efficiency in a typical MWI located in Taiwan. The MWI investigated is of mass-burn type and is equipped with electrostatic precipitators followed by wet scrubbers for removing air contaminants from gas streams. The results of energy balance analysis indicate that the rate of energy input is 73,000 MJ/h based on the lower heating value of 7,600 kJ/kg of municipal solid wastes for single incineration unit. Furthermore, energy distribution analysis demonstrates that the heat loss of incinerator, heat absorbed by boiler, heat loss of air pollution control devices, and heat discharge from stacks are 3.8%, 68.8%, 11.1%, and 15.1% of total energy input, respectively. The sum of heat absorbed by boiler and the heat discharged with the flue gas via stack accounts for more than 80% of the total energy input.

Municipal Solid Waste Incinerator Design: Basic Principles

2018

The paper presents some basics and the steps required when the design of an incinerator for heat recovery or waste treatment is being thought of. It is mostly important for designers in developing countries and students where the advanced design tools and computer modelling are not easily accessible. Waste management has become a major concern world‐wide and amidst various waste treatment methods like recycling, composting; incineration is the method that treats the non-reusable and non-organic portion of wastes. Incineration is a complex process due to the heterogonous nature of wastes. Incinerators cannot be designed properly without the knowledge of the combustion science involved and the characteristics of the wastes. Aspects of prime importance in design to be considered are: the incineration mechanisms and their selection, the grate firing systems, furnace geometries, secondary air injection, the 3Ts, the heating value or calorific value of the waste, theoretical Air to Fuel r...

Case preliminary study for municipal waste incineration

Human activities in huge agglomerations generate important amounts of domestic waste and waste water that count on the municipality administration to be ecologically resolved. In this paper, it is proposed incineration unit architecture for removing the mud resulted from waste water treatment, completed with ordinary human generated pollutants, collected as solids. From basic physical principles, as mass balance, thermal balance, thermodynamic cycle for energy recovery in mechanical or electrical form and thermal heat energy indirect exchange, there is done an estimation of the energetic efficiency and energy rate produced.

DESIGN OF MUNICIPAL SOLID WASTE INCINERATOR FOR USE IN SEMI-ARID REGIONS

The paper treats the design of a municipal solid waste incinerator suited to the semiarid regions with northern Nigeria and Niger Republic in West Africa as the study area. Proximate and ultimate analyses results from the solid waste were used as basis for calculations, using standard formulas and correlations. The calorific value of the solid waste samples in the study area is not high enough to sustain an incineration process and it ranges from 5.024 MJ/kg to 5.867 MJ/kg. For these types of low calorific value fuels, the parallel flow concept was found to be the appropriate type of incinerator. The solid waste to be fed in the incinerator needs to be mixed with 50% of supplementary fuel in the form of readily available bagasse to make it up to the required lower calorific value. Major characteristics of the designed municipal solid waste incinerator were: total volume of incinerator chamber: 82.5 m 3 , length of the incinerator bed: 11m; width of the incinerator bed: 3m and height of the incinerator chamber: 2.5 m, while the suitable adiabatic flame temperature was found to be 1,587 K.

Fluidized bed waste incinerators: Design, operational and environmental issues

Progress in Energy and Combustion Science, 2012

The paper starts by reviewing the increasing production of waste and the growing importance of its thermal treatment, which aims at volume reduction of the waste, at the destruction, capture, and concentration of hazardous substances, and at the recovery of energy (WtE). Incineration is a generally applied thermal treatment technique, whereas pyrolysis and gasification are still under development. Within the incineration techniques, bubbling, rotating and circulating fluidized beds have found specific and growing

Environmental assessment of energy production from municipal solid waste incineration

The International Journal of Life Cycle …, 2007

Background, Aims and Scope. During the combustion of municipal solid waste (MSW), energy is produced which can be utilized to generate electricity. However, electricity production from incineration has to be evaluated from the point view of the environmental performance. In this study, environmental impacts of electricity production from waste incineration plant in Thailand are compared with those from Thai conventional power plants.

THE STUDY OF COMBUSTION OF MUNICIPAL WASTE IN A FLUIDISED BED COMBUSTOR

The combustion behaviour of municipal solid waste was studied in a pilot fluidised bed combustor. The waste was pelletized prior to its use. Both co-firing with coal and combustion of waste alone were carried out. The combustion studies were carried out on the pilot installation of INETI. The fluidised bed combustor is square in cross section with each side being 300 mm long. Its height is 5000 mm. There is second air supply to the freeboard at different heights to deal with high volatile fuels. The temperatures in the bed, in the freeboard and in the gases leaving the reactor were continuously monitored. The flue gases leaving the reactor were continuously monitored. The combustion gases leaving the reactor were let go through the recycling cyclone first to capture most of particulates elutriated out of the combustor. There was a second cyclone which was employed with the aim of increasing the overall efficiency of collecting solid particles. The gaseous pollutants leaving the stack were sampled under isokinetic conditions for particulate matter, chlorine compounds and heavy metals. The ash streams were characterised for heavy metals. The results obtained were compared with national legislation. The results obtained suggest that i) the combustion efficiency was very high, ii) there was an enrichment of ashes with heavy metals in the cyclones compared to the bed material, and iii) in general, the gaseous pollutants were below the permited limits.

The prospect and development of incinerators for municipal solid waste treatment and characteristics of their pollutants in Taiwan

Applied Thermal Engineering, 2008

Taiwan is a small, densely populated island with unique experiences in the construction and operation of incinerators. In such a small area, Taiwan has built 22 incinerators over a short span of time, combusting large amount of municipal solid waste as much as 23,250 tons per day. This study focuses on the history of construction and development of incinerators in Taiwan as well as the characteristics of pollutants, such as heavy metals (Pb, Cd, and Hg), acid gases (NO x , SO x , CO, and HCl), and dioxins emitted from the incinerators. Furthermore, the study also covers the generation and composition of municipal solid waste (MSW), and the production of energy in Taiwan. According to Taiwan's data on pollutant emissions, the emission level of pollutants is under control and meets the stringent regulations of Taiwan Environmental Protection Administration (TEPA). Researches have shown that using air pollution control devices (APCDs) in the operation of incinerators provides effective measures for air pollutant control in Taiwan. The main advantage of using incinerators is the generation of electricity (waste-to-energy) during the incineration of municipal solid waste, producing energy that can be consumed by the general public and the industry. Taiwan's extensive experience in incinerator construction and operation may serve as an example for developing countries in devising waste treatment technology, energy recovery, and the control of contagious viral diseases.