Engineering biomaterials to control cell function (original) (raw)
Related papers
From Cell-ECM interactions to tissue engineering
Journal of Cellular Physiology, 2004
The extracellular matrix (ECM) consists of a complex mixture of structural and functional macromolecules and serves an important role in tissue and organ morphogenesis and in the maintenance of cell and tissue structure and function. The great diversity observed in the morphology and composition of the ECM contributes enormously to the properties and function of each organ and tissue. The ECM is also important during growth, development, and wound repair: its own dynamic composition acts as a reservoir for soluble signaling molecules and mediates signals from other sources to migrating, proliferating, and differentiating cells. Approaches to tissue engineering center on the need to provide signals to cell populations to promote cell proliferation and differentiation. These ''external signals'' are generated from growth factors, cell-ECM, and cell-cell interactions, as well as from physical-chemical and mechanical stimuli. This review considers recent advances in knowledge about cell-ECM interactions. A description of the main ECM molecules and cellular receptors with particular care to integrins and their role in stimulation of specific types of signal transduction pathways is also explained. The general principles of biomaterial design for tissue engineering are considered, with same examples.
HFSP Journal, 2008
During adhesion and spreading, cells form micrometer-sized structures comprising transmembrane and intracellular protein clusters, giving rise to the formation of what is known as focal adhesions. Over the past two decades these structures have been extensively studied to elucidate their organization, assembly, and molecular composition, as well as to determine their functional role. Synthetic materials decorated with biological molecules, such as adhesive peptides, are widely used to induce specific cellular responses dependent on cell adhesion. Here, we focus on how surface patterning of such bioactive materials and organization at the nanoscale level has proven to be a useful strategy for mimicking both physical and chemical cues present in the extracellular space controlling cell adhesion and fate. This strategy for designing synthetic cellular environments makes use of the observation that most cell signaling events are initiated through recruitment and clustering of transmembrane receptors by extracellular-presented signaling molecules. These systems allow for studying protein clustering in cells and characterizing the signaling response induced by, e.g., integrin activation. We review the findings about the regulation of cell adhesion and focal adhesion assembly by micro-and nanopatterns and discuss the possible use of substrate stiffness and patterning in mimicking both physical and chemical cues of the extracellular space.
Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix
Cell and Tissue Research, 2010
The ultimate goal in the design of biomimetic materials for use in tissue engineering as permanent or resorbable tissue implants is to generate biocompatible scaffolds with appropriate biomechanical and chemical properties to allow the adhesion, ingrowth, and survival of cells. Recent efforts have therefore focused on the construction and modification of biomimetic surfaces targeted to support tissue-specific cell functions including adhesion, growth, differentiation, motility, and the expression of tissue-specific genes. Four decades of extensive research on the structure and biological influence of the extracellular matrix (ECM) on cell behavior and cell fate have shown that three types of information from the ECM are relevant for the design of biomimetic surfaces: (1) physical properties (elasticity, stiffness, resilience of the cellular environment), (2) specific chemical signals from peptide epitopes contained in a wide variety of extracelluar matrix molecules, and (3) the nanoscale topography of microenvironmental adhesive sites. Initial physical and chemical approaches aimed at improving the adhesiveness of biomaterial surfaces by sandblasting, particle coating, or etching have been supplemented by attempts to increase the bioactivity of biomaterials by coating them with ECM macromolecules, such as fibronectin, elastin, laminin, and collagens, or their integrin-binding epitopes including RGD, YIGSR, and GFOGER. Recently, the development of new nanotechnologies such as photo-or electron-beam nanolithography, polymer demixing, nano-imprinting, compression molding, or the generation of TiO 2 nanotubes of defined diameters (15-200 nm), has opened up the possibility of constructing biomimetic surfaces with a defined nanopattern, eliciting tissue-specific cellular responses by stimulating integrin clustering. This development has provided new input into the design of novel biomaterials. The new technologies allowing the construction of a geometrically defined microenvironment for cells at the nanoscale should facilitate the investigation of nanotopography-dependent mechanisms of integrin-mediated cell signaling.
Gels, 2016
In their natural environment, cells are constantly exposed to a cohort of biochemical and biophysical signals that govern their functions and fate. Therefore, materials for biomedical applications, either in vivo or in vitro, should provide a replica of the complex patterns of biological signals. Thus, the development of a novel class of biomaterials requires, on the one side, the understanding of the dynamic interactions occurring at the interface of cells and materials; on the other, it requires the development of technologies able to integrate multiple signals precisely organized in time and space. A large body of studies aimed at investigating the mechanisms underpinning cell-material interactions is mostly based on 2D systems. While these have been instrumental in shaping our understanding of the recognition of and reaction to material stimuli, they lack the ability to capture central features of the natural cellular environment, such as dimensionality, remodelling and degradability. In this work, we review the fundamental traits of material signal sensing and cell response. We then present relevant technologies and materials that enable fabricating systems able to control various aspects of cell behavior, and we highlight potential differences that arise from 2D and 3D settings.
Targeted cellular adhesion at biomaterial interfaces
Current Opinion in Solid State & Materials Science, 1998
The interface of biomaterials must be carefully designed to elicit and eliminate specific responses when placed in contact with the body. The interaction of cells with the surfaces of biomaterials is a complex phenomenon that depends on a large number of variables. To design novel biomaterials that possess the desired characteristics, materials scientists and engineers rely heavily upon information provided by molecular biologists. Information regarding cell receptor-ligand interactions is used to understand the role of cellular adhesion in the natural environment so that synthetic biomaterials may be developed successfully. The production of new synthetic materials, understanding how native proteins mediate cellular adhesion with these materials, molecularly engineering surfaces with controlled spatial patterns for optimal responses, evaluation of mechanical properties, and analyzing bioadhesion and surface properties of these materials are topics that must be addressed when discussing targeted cellular adhesion at biomaterial surfaces.
Get a grip: integrins in cell–biomaterial interactions
Biomaterials, 2005
Integrin adhesion receptors have emerged as central regulators of cell–biomaterial interactions. This opinion paper discusses how integrins control cellular and host responses to biomaterials and new strategies to manipulate these adhesive interactions in order to elicit specific cellular responses.