SARS-CoV-2 antibodies recognize 23 distinct epitopic sites on the receptor binding domain (original) (raw)
Related papers
The Journal of Biochemistry
The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants associated with the adaptive evolution of the virus is prolonging the global coronavirus disease 2019 (COVID-19) pandemic. The modification of neutralizing antibodies based on structural information is expected to be a useful approach to rapidly combat emerging variants. A dimerized variable domain of heavy chain of heavy chain antibody (VHH) P17 that has highly potent neutralizing activity against SARS-CoV-2 has been reported but the mode of interaction with the epitope remains unclear. Here, we report the X-ray crystal structure of the complex of monomerized P17 bound to the SARS-CoV-2 receptor binding domain (RBD) and investigated the binding activity of P17 toward various variants of concern (VOCs) using kinetics measurements. The structure revealed details of the binding interface and showed that P17 had an appropriate linker length to have an avidity effect and recognize a wide ra...
Synthetic nanobody–SARS-CoV-2 receptor-binding domain structures identify distinct epitopes
2021
The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands unprecedented attention. We report four X-ray crystal structures of three synthetic nanobodies (sybodies) (Sb16, Sb45 and Sb68) bind to the receptor-binding domain (RBD) of SARS-CoV-2: binary complexes of Sb16–RBD and Sb45–RBD; a ternary complex of Sb45–RBD–Sb68; and Sb16 unliganded. Sb16 and Sb45 bind the RBD at the ACE2 interface, positioning their CDR2 and CDR3 loops diametrically. Sb16 reveals a large CDR2 shift when binding the RBD. Sb68 interacts peripherally at the ACE2 interface; steric clashes with glycans explain its mechanism of viral neutralization. Superposing these structures onto trimeric spike (S) protein models indicates these sybodies bind conformations of the mature S protein differently, which may aid therapeutic design.One Sentence SummaryX-ray structures of synthetic nanobodies complexed with the receptor-binding domain of the spike protein of SARS-CoV-2 reveal details ...
Journal of Biological Chemistry, 2021
Edited by Craig E. Cameron Combating the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new variants demands understanding of the structural basis of the interaction of antibodies with the SARS-CoV-2 receptorbinding domain (RBD). Here, we report five X-ray crystal structures of sybodies (synthetic nanobodies) including those of binary and ternary complexes of Sb16-RBD, Sb45-RBD, Sb14-RBD-Sb68, and Sb45-RBD-Sb68, as well as unliganded Sb16. These structures reveal that Sb14, Sb16, and Sb45 bind the RBD at the angiotensin-converting enzyme 2 interface and that the Sb16 interaction is accompanied by a large conformational adjustment of complementarity-determining region 2. In contrast, Sb68 interacts at the periphery of the SARS-CoV-2 RBD-angiotensin-converting enzyme 2 interface. We also determined cryo-EM structures of Sb45 bound to the SARS-CoV-2 spike protein. Superposition of the X-ray structures of sybodies onto the trimeric spike protein cryo-EM map indicates that some sybodies may bind in both "up" and "down" configurations, but others may not. Differences in sybody recognition of several recently identified RBD variants are explained by these structures.
2021
ABSTRACTThe SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including B.1.1.7, P1, and B.1.351, some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. T...
Vaccines
Coronavirus disease-2019 (COVID-19) is a pandemic with a high morbidity rate occurring over recent years. COVID-19 is caused by the severe acute respiratory syndrome causing coronavirus type-2 (SARS-CoV-2). COVID-19 not only challenged mankind but also gave scope to the evolution of various vaccine design technologies. Although these vaccines protected and saved many lives, with the emerging viral strains, some of the strains may pose a threat to the currently existing vaccine design that is primarily based on the wild type spike protein of SARS-CoV-2. To evaluate the risk involved from such mutant viral strains, we performed a systematic in silico amino acid substitution of critical residues in the receptor binding domain (RBD) of the spike protein. Our molecular modeling analysis revealed significant topological changes in the RBD of spike protein suggesting that they could potentially contribute to the loss of antigen specificity for the currently existing therapeutic antibodies/...
2020
Effective and safe vaccines against SARS-CoV-2 are highly desirable to prevent casualties and societal cost caused by Covid-19 pandemic. The receptor binding domain (RBD) of the surface-exposed spike protein of SARS-CoV-2 represents a suitable target for the induction of neutralizing antibodies upon vaccination. Small protein antigens typically induce weak immune response while particles measuring tens of nanometers are efficiently presented to B cell follicles and subsequently to follicular germinal center B cells in draining lymph nodes, where B cell proliferation and affinity maturation occurs. Here we prepared and analyzed the response to several DNA vaccines based on genetic fusions of RBD to four different scaffolding domains, namely to the foldon peptide, ferritin, lumazine synthase and β-annulus peptide, presenting from 6 to 60 copies of the RBD on each particle. Scaffolding strongly augmented the immune response with production of neutralizing antibodies and T cell response...
Research Square, 2021
The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and emergence of new variants demands understanding the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here we report five X-ray crystal structures of sybodies (synthetic nanobodies) including binary and ternary complexes of Sb16–RBD, Sb45–RBD, Sb14–RBD–Sb68, and Sb45–RBD–Sb68; and Sb16 unliganded. These reveal that Sb14, Sb16, and Sb45 bind the RBD at the ACE2 interface and that the Sb16 interaction is accompanied by a large CDR2 shift. In contrast, Sb68 interacts at the periphery of the interface. We also determined cryo-EM structures of Sb45 bound to spike (S). Superposition of the X-ray structures of sybodies onto the trimeric S protein cryo-EM map indicates some may bind both “up” and “down” configurations, but others may not. Sensitivity of sybody binding to several recently identified RBD mutants is consistent with these structures.
Structure-Based Epitope Design: Toward a Greater Antibody–SARS-CoV-2 RBD Affinity
ACS Omega, 2021
Efficient COVID-19 vaccines are widely acknowledged as the best way to end the global pandemic. SARS-CoV-2 receptor-binding domain (RBD) plays fundamental roles related to cell infection. Antibodies could be developed to target RBD and represent a potential approach for the neutralization of the virus. Epitopes used to produce antibodies are generally linear peptides and thus possess multiple confirmations that do not reflect the actual topology of the targeted part in the native protein. On the other hand, macrocyclic epitopes could constitute closer mimics of the native protein topology and, as such, could generate superior antibodies. In this study, we demonstrated the vital effect of the size and the three-dimensional shape of epitopes on the activity of the developed antibodies against the RBD of SARS-CoV-2. The molecular dynamics studies showed the greater stability of the cyclic epitopes compared with the linear counterparts, which was reflected in the affinity of the produced antibodies. The antibodies developed using macrocyclic epitopes showed superiority with respect to binding to RBD compared to antibodies formed from linear peptides. This study constitutes a roadmap for developing superior antibodies that could be used to inhibit the activity of SARS-CoV-2.
Viruses
Currently, SARS-CoV-2 causing coronavirus disease 2019 (COVID-19) is responsible for one of the most deleterious pandemics of our time. The interaction between the ACE2 receptors at the surface of human cells and the viral Spike (S) protein triggers the infection, making the receptor-binding domain (RBD) of the SARS-CoV-2 S-protein a focal target for the neutralizing antibodies (Abs). Despite the recent progress in the development and deployment of vaccines, the emergence of novel variants of SARS-CoV-2 insensitive to Abs produced in response to the vaccine administration and/or monoclonal ones represent a potential danger. Here, we analyzed the diversity of neutralizing Ab epitopes and assessed the possible effects of single and multiple mutations in the RBD of SARS-CoV-2 S-protein on its binding affinity to various antibodies and the human ACE2 receptor using bioinformatics approaches. The RBD-Ab complexes with experimentally resolved structures were grouped into four clusters wit...
Viruses
Engineered nanobodies (VHs) to the SARS-CoV-2 receptor-binding domain (RBD) were generated using phage display technology. A recombinant Wuhan RBD served as bait in phage panning to fish out nanobody-displaying phages from a VH/VHH phage display library. Sixteen phage-infected E. coli clones produced nanobodies with 81.79–98.96% framework similarity to human antibodies; thus, they may be regarded as human nanobodies. Nanobodies of E. coli clones 114 and 278 neutralized SARS-CoV-2 infectivity in a dose-dependent manner; nanobodies of clones 103 and 105 enhanced the virus’s infectivity by increasing the cytopathic effect (CPE) in an infected Vero E6 monolayer. These four nanobodies also bound to recombinant Delta and Omicron RBDs and native SARS-CoV-2 spike proteins. The neutralizing VH114 epitope contains the previously reported VYAWN motif (Wuhan RBD residues 350–354). The linear epitope of neutralizing VH278 at Wuhan RBD 319RVQPTESIVRFPNITN334 is novel. In this study, for the first...