Computer Modeling of D, L – Homocysteic Acid Microinjection into the Bötzinger Complex Area (original) (raw)

Cough-Modulated Neurone Activity Patterns in the Caudal Medial Medulla

Pulmonary Pharmacology & Therapeutics, 2011

irritation induced 8/9 (89%) ER +MDR and no response 1/9 (11%). A significant difference was found between the types of responses in those two conditions (p<0.001). Conclusion: On a background of diving reflex stimulation, the tracheal irritation elicited a considerably attenuated defensive ventilatory response. This work offers an interesting animal model allowing the study of the down-regulation of the expiration reflex at central nervous system level.

Discharge identity of medullary inspiratory neurons is altered during repetitive fictive cough

2012

This study investigated the stability of the discharge identity of inspiratory decrementing (I-Dec) and augmenting (I-Aug) neurons in the caudal (cVRC) and rostral (rVRC) ventral respiratory column during repetitive fictive cough in the cat. Inspiratory neurons in the cVRC (n = 23) and rVRC (n = 17) were recorded with microelectrodes. Fictive cough was elicited by mechanical stimulation of the intrathoracic trachea. Approximately 43% (10 of 23) of I-Dec neurons shifted to an augmenting discharge pattern during the first cough cycle (C1). By the second cough cycle (C2), half of these returned to a decrementing pattern. Approximately 94% (16 of 17) of I-Aug neurons retained an augmenting pattern during C1 of a multi-cough response episode. Phrenic burst amplitude and inspiratory duration increased during C1, but decreased with each subsequent cough in a series of repetitive coughs. As a step in evaluating the model-driven hypothesis that VRC I-Dec neurons contribute to the augmentation of inspiratory drive during cough via inhibition of VRC tonic expiratory neurons that inhibit premotor inspiratory neurons, cross-correlation analysis was used to assess relationships of tonic expiratory cells with simultaneously recorded inspiratory neurons. Our results suggest that reconfiguration of inspiratory-related sub-networks of the respiratory pattern generator occurs on a cycle-by-cycle basis during repetitive coughing.

The role of neuronal excitation and inhibition in the pre-Bötzinger complex on the cough reflex in the cat

Journal of Neurophysiology, 2021

This study is the first to explore the role of the inspiratory rhythm and pattern generator, the pre-Bötzinger complex (PreBötC), in cough motor pattern formation. In the PreBötC, excitatory glutamatergic neurotransmission affects cough intensity and patterning but not rhythm, and GABAA receptor-related inhibition affects coughing and breathing phase durations similarly to each other. Our data show that the PreBötC is important for cough motor pattern generation, but cough rhythmogenesis appears to be controlled elsewhere.

Production of reflex cough by brainstem respiratory networks

2004

Delineation of neural mechanisms involved in reflex cough is essential for understanding its many physiological and clinical complexities, and the development of more desirable antitussive agents. Brainstem networks that generate and modulate the breathing pattern are also involved in producing the motor patterns during reflex cough. Neurones of the ventrolateral medulla respiratory pattern generator mutually interact with neural networks in the pons, medulla and cerebellum to form a larger dynamic network. This paper discusses evidence from our laboratory and others supporting the involvement of the nucleus tractus solitarii, midline raphe nuclei and lateral tegmental field in the medulla, and the pontine respiratory group and cerebellum in the production of reflex cough. Gaps in our knowledge are identified to stimulate further research on this complicated issue.

Activity of dorsal respiratory group inspiratory neurons during laryngeal-induced fictive coughing and swallowing in decerebrate cats

Experimental Brain Research, 1996

Membrane potential changes and/or discharges from 36 inspiratory neurons were recorded intracellularly in the dorsal respiratory group (DRG; i.e., the ventrolateral subdivision of the nucleus tractus solitarii) in decerebrate, paralyzed, and ventilated cats. Electrical activities were recorded from both somata (n=10) and axons (n=26). Activities during quiet breathing were compared with those observed during fictive coughing and swallowing evoked by repetitive electrical stimulation of afferent fibers of the superior laryngeal nerve (SLN). These nonrespiratory behaviors were evident in paralyzed animals as characteristic discharge patterns of the phrenic, abdominal, and hypoglossal nerves. Twenty-six neurons exhibiting antidromic action potentials in response to electrical stimuli applied to the cervical (C3–5) spinal cord were classified as inspiratory bulbospinal neurons (IBSNs). These neurons were considered as premotoneurons. The remaining 10 inspiratory neurons (INAA) were not antidromically activated by electrical stimuli applied to either cervical spinal cord or ipsilateral cervical vagus. These neurons are thought to be propriobulbar neurons. We recorded the activity of 31 DRG inspiratory neurons (24 IBSNs and 7 I-NAA) during coughing. All but one (a late-recruited IBSN) discharged a burst of action potentials during the coughing-related phrenic nerve activity. Typically, ramp-like membrane depolarization trajectories and discharge frequencies during coughing were similar to those observed during inspiration. We recorded the activity of 33 DRG inspiratory neurons (23 IBSNs and 10 I-NAA) during swallowing. Most (28/33) neurons were briefly activated, i.e., discharged a burst of action potentials during swallowing, but peak discharge frequency decreased compared with that measured during inspiration. The membrane potentials of nine somata exhibited a brief bell-shaped depolarization during swallowing, the amplitude of which was similar to that observed during inspiration. These results suggest that some inspiratory premotoneurons and propriobulbar neurons of the DRG might be involved in nonrespiratory motor activities, even if clearly antagonistic to breathing (e.g., swallowing). We postulate the existence in the medulla oblongata of adult mammals of neurons exhibiting a “functional flexibility”.

Modulation of expiratory motor output evoked by chemical activation of pre-Bötzinger complex in vivo

Respiratory Physiology & Neurobiology, 2002

We have previously demonstrated that chemical stimulation of the pre-Bö tzinger complex (pre-Bö tC) in the anesthetized cat produces either phasic or tonic excitation of phrenic nerve discharge. This region is characterized by a mixture of inspiratory-modulated, expiratory-modulated, and phase-spanning (including pre-inspiratory (pre-I)) neurons; however, its influence on expiratory motor output is unknown. We, therefore, examined the effects of chemical stimulation of the pre-Bö tC on expiratory motor output recorded from the caudal iliohypogastric (lumbar, L 2) nerve. We found that unilateral microinjection of DL-homocysteic acid (DLH; 10 mM; 10-20 nl) into 16 sites in the pre-Bö tC enhanced lumbar nerve discharge, including changes in timing and patterning similar to those previously reported for phrenic motor output. Both increased peak amplitude and frequency of phasic lumbar bursts as well as tonic excitation of lumbar motor activity were observed. In some cases, evoked phasic lumbar nerve activity was synchronized in phase with phrenic nerve discharge. These findings demonstrate that chemical stimulation of the pre-Bö tC not only excites inspiratory motor activity but also excites expiratory motor output, suggesting a role for the pre-Bö tC in generation and modulation of inspiratory and expiratory rhythm and pattern.

Feed-forward and reciprocal inhibition for gain and phase timing control in a computational model of repetitive cough

Journal of Applied Physiology, 2016

We investigated the hypothesis, motivated in part by a coordinated computational cough network model, that second-order neurons in the nucleus tractus solitarius (NTS) act as a filter and shape afferent input to the respiratory network during the production of cough. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms of the parasternal (inspiratory) and rectus abdominis (expiratory) muscles and esophageal pressure were recorded. In vivo data revealed that expiratory motor drive during bouts of repetitive coughs is variable: peak expulsive amplitude increases from the first cough, peaks about the eighth or ninth cough, and then decreases through the remainder of the bout. Model simulations indicated that feed-forward inhibition of a single second-order neuron population is not sufficient to account for this dynamic feature of a repetitive cough bout. When a single second-order population was split into two subpopulations (inspiratory and expiratory), the resultant model produced simulated expiratory motor bursts that were comparable to in vivo data. However, expiratory phase durations during these simulations of repetitive coughing had less variance than those in vivo. Simulations in which reciprocal inhibitory processes between inspiratory-decrementing and expiratory-augmenting-late neurons were introduced exhibited increased variance in the expiratory phase durations. These results support the prediction that serial and parallel processing of airway afferent signals in the NTS play a role in generation of the motor pattern for cough. airway protection; computational modeling; cough; in vivo; inhibition

Microinjection of kynurenic acid in the rostral nucleus of the tractus solitarius disrupts spatiotemporal aspects of mechanically induced tracheobronchial cough

Journal of Neurophysiology, 2017

The importance of neurons in the nucleus of the solitary tract (NTS) in the production of coughing was tested by microinjections of the nonspecific glutamate receptor antagonist kynurenic acid (kyn; 100 mM in artificial cerebrospinal fluid) in 15 adult spontaneously breathing anesthetized cats. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airway. Electromyograms (EMG) were recorded from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles. Bilateral microinjections of kyn into the NTS rostral to obex [55 ± 4 nl total in 2 locations ( n = 6) or 110 ± 4 nl total in 4 locations ( n = 5)], primarily the ventrolateral subnucleus, reduced cough number and expiratory cough efforts (amplitudes of ABD EMG and maxima of esophageal pressure) compared with control. These microinjections also markedly prolonged the inspiratory phase, all cough-related EMG activation, and the total cough cycle duration as well as some other cough-related ti...