Evolutionary Conservation of the Role of CD4 as a Receptor for Interleukin-16 (original) (raw)
Related papers
Archives of Autoimmune Diseases, 2020
IL-16 is a pleiotropic, pro-inflammatory cytokine that induces regulatory CD4+ T cells to migrate to a site of inflammation or tissue damage. IL-16 is a ligand for CD4 and binds at the proximal, D4 region well outside of the binding site for MHC class II. The sequence and structure of IL-16 is highly conserved among disparate vertebrates but CD4 is less well conserved and is highly variable at the distal, D1region that binds to MHC class II during T-cell activation and effector function. Conversely, the D4 region, like its ligand, is very highly conserved. This conservation of sequence and structure suggests that the role of CD4 as a receptor for IL-16 has been retained throughout vertebrate phylogeny. Because of the conservation of this receptor: ligand pair, we set out to demonstrate that recombinant human IL-16 (rhIL-16) can elicit the same effects on lymphocytes from the amphibian Xenopus laevis as it would on human lymphocytes. Our data suggest that rhIL-16 attracts a population of CD4+ lymphocytes with a regulatory phenotype.
Genes, 2021
Understanding the evolution of interleukins and interleukin receptors is essential to control the function of CD4+ T cells in various pathologies. Numerous aspects of CD4+ T cells’ presence are controlled by interleukins including differentiation, proliferation, and plasticity. CD4+ T cells have emerged during the divergence of jawed vertebrates. However, little is known about the evolution of interleukins and their origin. We traced the evolution of interleukins and their receptors from Placozoa to primates. We performed phylogenetic analysis, ancestral reconstruction, HH search, and positive selection analysis. Our results indicated that various interleukins’ emergence predated CD4+ T cells divergence. IL14 was the most ancient interleukin with homologs in fungi. Invertebrates also expressed various interleukins such as IL41 and IL16. Several interleukin receptors also appeared before CD4+ T cells divergence. Interestingly IL17RA and IL17RD, which are known to play a fundamental r...
© 2005 Nature Publishing Group RECONSTRUCTING IMMUNE PHYLOGENY: NEW PERSPECTIVES
| Numerous studies of the mammalian immune system have begun to uncover profound interrelationships, as well as fundamental differences, between the adaptive and innate systems of immune recognition. Coincident with these investigations, the increasing experimental accessibility of non-mammalian jawed vertebrates, jawless vertebrates, protochordates and invertebrates has provided intriguing new information regarding the likely patterns of emergence of immune-related molecules during metazoan phylogeny, as well as the evolution of alternative mechanisms for receptor diversification. Such findings blur traditional distinctions between adaptive and innate immunity and emphasize that, throughout evolution, the immune system has used a remarkably extensive variety of solutions to meet fundamentally similar requirements for host protection. 866 | NOVEMBER 2005 | VOLUME 5 www.nature.com/reviews/immunol
Journal of immunology (Baltimore, Md. : 1950), 2006
The T cell coreceptor CD4 is a transmembrane glycoprotein belonging to the Ig superfamily and is essential for cell-mediated immunity. Two different genes were identified in rainbow trout that resemble mammalian CD4. One (trout CD4) encodes four extracellular Ig domains reminiscent of mammalian CD4, whereas the other (CD4REL) codes for two Ig domains. Structural motifs within the amino acid sequences suggest that the two Ig domains of CD4REL duplicated to generate the four-domain molecule of CD4 and the related gene, lymphocyte activation gene-3. Here we present evidence that both of these molecules in trout are homologous to mammalian CD4 and that teleosts encode an additional CD4 family member, lymphocyte activation gene-3, which is a marker for activated T cells. The syntenic relationships of similar genes in other teleost and non-fish genomes provide evidence for the likely evolution of CD4-related molecules in vertebrates, with CD4REL likely representing the primordial form in ...
Origin and evolution of the vertebrate leukocyte receptors: the lesson from tunicates
Immunogenetics, 2009
Two selected receptor genes of the immunoglobulin superfamily (IgSF), one CTX/JAM family member, and one poliovirus receptor-like nectin that have features of adhesion molecules can be expressed by Ciona hemocytes, the effectors of immunity. They can also be expressed in the nervous system (CTX/JAM) and in the ovary (nectin). The genes encoding these receptors are located among one set of genes, spread over Ciona chromosomes 4 and 10, and containing other IgSF members homologous to those encoded by genes present in a tetrad of human (1, 3+X, 11, 21+19q) or bird chromosomes (1, 4, 24, 31) that include the leukocyte receptor complex. It is proposed that this tetrad is due to the two rounds of duplication that affected a single prevertebrate ancestral region containing a primordial leukocyte receptor complex involved in immunity and other developmental regulatory functions.
Ancient divergence of a complex family of immune-type receptor genes
Immunogenetics, 2006
Multigene families of activating/inhibitory receptors belonging to the immunoglobulin superfamily (IgSF) regulate immunological and other cell-cell interactions. A new family of such genes, termed modular domain immune-type receptors (MDIRs), has been identified in the clearnose skate (Raja eglanteria), a phylogenetically ancient vertebrate. At least five different major forms of predicted MDIR proteins are comprised of four different subfamilies of IgSF ectodomains of the intermediate (I)-or C2-set. The predicted number of individual IgSF ectodomains in MDIRs varies from one to six. MDIR1 contains a positively charged transmembrane residue and MDIR2 and MDIR3 each possesses at least one immunoreceptor tyrosine-based inhibitory motif in their cytoplasmic regions. MDIR4 and MDIR5 lack characteristic activating/inhibitory signalling motifs. MDIRs are encoded in a particularly large and complex multigene family. MDIR domains exhibit distant sequence similarity to mammalian CMRF-35-like molecules, polymeric immunoglobulin receptors, triggering receptors expressed on myeloid cells (TREMs), TREM-like transcripts, NKp44 and FcR homologs, as well as to sequences identified in several different vertebrate genomes. Phylogenetic analyses suggest that MDIRs are representative members of an extended family of IgSF genes that diverged before or very early in evolution of the vertebrates and subsequently came to occupy multiple, fully independent distributions in the present day.
Evolution of Antigen Binding Receptors
Annual Review of Immunology, 1999
▪ This review addresses issues related to the evolution of the complex multigene families of antigen binding receptors that function in adaptive immunity. Advances in molecular genetic technology now permit the study of immunoglobulin (Ig) and T cell receptor (TCR) genes in many species that are not commonly studied yet represent critical branch points in vertebrate phylogeny. Both Ig and TCR genes have been defined in most of the major lineages of jawed vertebrates, including the cartilaginous fishes, which represent the most phylogenetically divergent jawed vertebrate group relative to the mammals. Ig genes in cartilaginous fish are encoded by multiple individual loci that each contain rearranging segmental elements and constant regions. In some loci, segmental elements are joined in the germline, i.e. they do not undergo genetic rearrangement. Other major differences in Ig gene organization and the mechanisms of somatic diversification have occurred throughout vertebrate evolut...
Immunogenetics, 2003
Genome-wide sequence analysis in the invertebrate chordate, Ciona intestinalis, has provided a comprehensive picture of immune-related genes in an organism that occupies a key phylogenetic position in vertebrate evolution. The pivotal genes for adaptive immunity, such as the major histocompatibility complex (MHC) class I and II genes, T-cell receptors, or dimeric immunoglobulin molecules, have not been identified in the Ciona genome. Many genes involved in innate immunity have been identified, including complement components, Toll-like receptors, and the genes involved in intracellular signal transduction of immune responses, and show both expansion and unexpected diversity in comparison with the vertebrates. In addition, a number of genes were identified which predicted integral membrane proteins with extracellular C-type lectin or immunoglobulin domains and intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based activation motifs (ITAMs) (plus their associated signal transduction molecules), suggesting that activating and inhibitory receptors have an MHC-independent function and an early evolutionary origin. A crucial component of vertebrate adaptive immunity is somatic diversification, and the recombination activating genes (RAG) and activation-induced cytidine deaminase (AID) genes responsible for the Generation of diversity are not present in Ciona. However, there are key V regions, the essential feature of an immunoglobulin superfamily VC1-like core, and possible proto-MHC regions scattered throughout the genome waiting for Godot.
Gene, 2012
Toll-like receptors (TLRs) that initiate an innate immune response contain an extracellular leucine rich repeat (LRR) domain and an intracellular Toll IL-receptor (TIR) domain. There are fifteen different TLRs in vertebrates. The LRR domains, which adopt a solenoid structure, usually have higher rates of evolution than do the TIR globular domains. It is important to understand the molecular evolution and functional roles of TLRs from this standpoint. Both pairwise genetic distances and Ka/Ks's (the ratios between non synonymous and synonymous substitution rates) were compared between the LRR domain and the TIR domain of 366 vertebrate TLRs from 96 species (from fish to primates). In fourteen members (TLRs 1, 2, 3, 4, 5, 6, 7, 8, 9, 11/12, 13, 14, 21, and 22/23) the LRR domains evolved significantly more rapidly than did the corresponding TIR domains. The evolutionary rates of the LRR domains are significantly different among these members; LRR domains from TLR3 and TLR7 from primates to fishes have the lowest rate of evolution. In contrast, the fifteenth member, TLR10, shows no significant differences; its TIR domain is not highly conserved. The present results suggest that TLR10 may have a different function in signaling from those other members and that a higher conservation of TLR3 and TLR7 may reflect a more ancient mechanism and/or structure in the innate immune response system. Gene conversions are suggested to have occurred in platypus TLR6 and TLR10. This study provides new insight about structural and functional diversification of vertebrate TLRs.
Annals of the New York Academy of Sciences, 1994
In summary, the characters of the echinoderm immune system that we review here can be considered to illuminate the baseline nonadaptive immune systems that were our original deuterostome heritage. We still retain--and greatly rely upon--similarly functioning, nonadaptive cellular defense systems. It is worth stressing that sea urchins are long lived, normally healthy animals that display remarkable abilities to heal wounds and combat major infections. From an external point of view, their immune systems obviously work very well. Thus, their cellular defense systems are extremely sensitive, and they respond rapidly to minor perturbations, all without any specific adaptive capabilities. These systems probably function through the transduction of signals conveying information on injury and infection, just as do the equivalent systems that underlie and back up our own adaptive immune systems, and that provide the initial series of defenses against pathogenic invasions. Many extremely interesting questions remain regarding the evolution of the deuterostome immune response. Are the echinoderm and tunicate systems the same, or have the protochordates augmented the basic phagocyte system with an as yet unidentified chordate-like character? Do the jawless fishes produce Igs that would make them similar to the sharks, or are they vertebrates without an Ig system that essentially rely on an invertebrate-like, nonspecific, activated phagocyte type of immune system? How do sharks regulate their immune system without T cells and MHC class I? How do they avoid producing autoantibodies? Future research will not only answer these questions, but those answers will also be enlightening with regard to the origins of the mammalian immune system in which ancient functions and subsystems remain.