On -episturmian words (original) (raw)
Abstract
In this paper we study a class of infinite words on a finite alphabet A whose factors are closed under the image of an involutory antimorphism θ of the free monoid A * . We show that given a recurrent infinite word ω ∈ A N , if there exists a positive integer K such that for each n ≥ 1 the word ω has 1) card A + (n − 1)K distinct factors of length n, and 2) a unique right and a unique left special factor of length n, then there exists an involutory antimorphism θ of the free monoid A * preserving the set of factors of ω.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (33)
- V. Anne, L. Q. Zamboni, I. Zorca, Palindromes and pseudo-palindromes in episturmian and pseudo-palindromic infinite words, In S. Brlek, C. Reutenauer (Eds.), Words 2005, Publications du LACIM 36 (2005) 91-100.
- P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n + 1, Bull. Soc. Math. France 119 (1991), 199-215.
- J. Berstel, P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 175-189.
- J. Berstel, P. Séébold, Sturmian words, in: M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge UK, 2002. Available at: http://www-igm.univ-mlv.fr/\~berstel/Lothaire/index.html.
- V. Berthé, Fréquences des facteurs des suites sturmiennes, Theoret. Comput. Sci. 165 (1996), 295-309, doi:10.1016/0304-3975(95)00224-3.
- V. Berthé, C. Holton, L.Q. Zamboni, Initial critical exponent, and powers in Sturmian words, Acta Arith. 122 (2006), 315-347.
- M. Bucci, A. de Luca, A. De Luca, L. Q. Zamboni, On some problems related to palindrome closure, Theor. Inform. Appl. (2008), in press, doi:10.1051/ita:2007064.
- M. Bucci, A. de Luca, A. De Luca, L. Q. Zamboni, On different generalizations of episturmian words, Theoret. Comput. Sci. 393 (2008) 23-36, doi:10.1016/j.tcs.2007.10.043.
- M. G. Castelli, F. Mignosi, A. Restivo, Fine and Wilf's theorem for three periods and a generalization of Sturmian words, Theoret. Comput. Sci. 218 (1999), 83-94, doi:10.1016/S0304-3975(98)00251-5.
- E. Coven, G. A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153.
- A. de Luca, Sturmian words: structure, combinatorics, and their arithmetics, Theoretical Computer Science 183 (1997), 45-82, doi:10.1016/S0304- 3975(96)00310-6.
- A. de Luca, A. De Luca, Pseudopalindrome closure operators in free monoids, Theoret. Comput. Sci. 362 (2006), 282-300, doi:10.1016/j.tcs.2006.07.009.
- A. de Luca, F. Mignosi, Some combinatorial properties of Sturmian words, Theoret. Comput. Sci. 136 (1994), 361-385, doi:10.1016/0304-3975(94)00035- H.
- X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001), 539-553, doi:10.1016/S0304-3975(99)00320-5.
- S. Ferenczi, C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), 146-161, doi:10.1006/jnth.1997.2175.
- S. Fischler, Palindromic prefixes and episturmian words, J. Combin. Theory Ser. A 113 (2006), 1281-1304, doi:10.1016/j.jcta.2005.12.001.
- A. Glen, Powers in a class of A-strict standard episturmian words, Theoret. Comput. Sci. 380 (2007), 330-354, doi:10.1016/j.tcs.2007.03.023.
- A. Glen, On Sturmian and Episturmian words, and related topics, Ph.D. thesis excerpt, Bull. Australian Math. Soc. 74 (2006), 155-160.
- A. Glen, J. Justin, G. Pirillo, A characterization of finite and infinite episturmian words via lexicographic orderings, European J. Combinatorics 29 (2008), 45-58, doi:10.1016/j.ejc.2007.01.002.
- O. Jenkinson, L. Q. Zamboni, Characterisations of balanced words via orderings, Theoret. Comput. Sci. 310 (2004), 247-271, doi:10.1016/S0304- 3975(03)00397-9.
- J. Justin, Episturmian words and morphisms (results and conjectures), Algebraic combinatorics and Computer Science, Springer Italia, Milan 2001, 533-539.
- J. Justin, On a paper by Castelli, Mignosi, Restivo. Theor. Inform. Appl. 34 (2000), 373-377.
- J. Justin, G. Pirillo, Episturmian words and episturmian morphisms, Theoret. Comput. Sci. 302 (2003), 1-34, doi:10.1016/S0304-3975(01)00207-9.
- J. Justin, G. Pirillo, Episturmian words: shifts, morphisms and numeration systems, Internat. J. Found. Comput. Sci. 15 (2004), 329-348.
- J. Justin, L. Vuillon, Return words in Sturmian and Episturmian words, Theor. Inform. Appl. 34 (2000), 343-356.
- L. Kari, S. Konstantinidis, P. Sosík, G. Thierrin, On hairpin-free words and languages. In C. De Felice, A. Restivo (Eds.), Developments in Language Theory, Lecture Notes in Computer Science, vol. 3572, Springer, Berlin 2005, 296-307.
- M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading MA, 1983. Reprinted by Cambridge University Press, Cambridge UK, 1997.
- F. Mignosi, Infinite words with linear subword complexity, Theoret. Comput. Sci. 65 (1989), 221-242, doi:10.1016/0304-3975(89)90046-7.
- F. Mignosi, On the number of factors of Sturmian words, Theoret. Comput. Sci. 82 (1991), 71-84, doi:10.1016/0304-3975(91)90172-X.
- M. Morse, G. A. Hedlund, Symbolic dynamics II: Sturmian sequences, Amer. J. Math. 62 (1940), 1-42.
- G. Rauzy, Mots infinis en arithmétique, in M. Nivat, D. Perrin (Eds.), Automata on Infinite Words, Lecture Notes in Computer Science, vol. 192 (Springer, Berlin 1985) 165-171.
- R. Tijdeman, L. Q. Zamboni, Fine and Wilf words for any periods, Indag. math. (N.S.) 14 (2003), 135-147, doi:10.1016/S0019-3577(03)90076-0.
- R. Tijdeman, L. Q. Zamboni, Fine and Wilf words for any periods II, preprint (2007).