On -episturmian words (original) (raw)

Abstract

In this paper we study a class of infinite words on a finite alphabet A whose factors are closed under the image of an involutory antimorphism θ of the free monoid A * . We show that given a recurrent infinite word ω ∈ A N , if there exists a positive integer K such that for each n ≥ 1 the word ω has 1) card A + (n − 1)K distinct factors of length n, and 2) a unique right and a unique left special factor of length n, then there exists an involutory antimorphism θ of the free monoid A * preserving the set of factors of ω.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (33)

  1. V. Anne, L. Q. Zamboni, I. Zorca, Palindromes and pseudo-palindromes in episturmian and pseudo-palindromic infinite words, In S. Brlek, C. Reutenauer (Eds.), Words 2005, Publications du LACIM 36 (2005) 91-100.
  2. P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n + 1, Bull. Soc. Math. France 119 (1991), 199-215.
  3. J. Berstel, P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 175-189.
  4. J. Berstel, P. Séébold, Sturmian words, in: M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge UK, 2002. Available at: http://www-igm.univ-mlv.fr/\~berstel/Lothaire/index.html.
  5. V. Berthé, Fréquences des facteurs des suites sturmiennes, Theoret. Comput. Sci. 165 (1996), 295-309, doi:10.1016/0304-3975(95)00224-3.
  6. V. Berthé, C. Holton, L.Q. Zamboni, Initial critical exponent, and powers in Sturmian words, Acta Arith. 122 (2006), 315-347.
  7. M. Bucci, A. de Luca, A. De Luca, L. Q. Zamboni, On some problems related to palindrome closure, Theor. Inform. Appl. (2008), in press, doi:10.1051/ita:2007064.
  8. M. Bucci, A. de Luca, A. De Luca, L. Q. Zamboni, On different generalizations of episturmian words, Theoret. Comput. Sci. 393 (2008) 23-36, doi:10.1016/j.tcs.2007.10.043.
  9. M. G. Castelli, F. Mignosi, A. Restivo, Fine and Wilf's theorem for three periods and a generalization of Sturmian words, Theoret. Comput. Sci. 218 (1999), 83-94, doi:10.1016/S0304-3975(98)00251-5.
  10. E. Coven, G. A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153.
  11. A. de Luca, Sturmian words: structure, combinatorics, and their arithmetics, Theoretical Computer Science 183 (1997), 45-82, doi:10.1016/S0304- 3975(96)00310-6.
  12. A. de Luca, A. De Luca, Pseudopalindrome closure operators in free monoids, Theoret. Comput. Sci. 362 (2006), 282-300, doi:10.1016/j.tcs.2006.07.009.
  13. A. de Luca, F. Mignosi, Some combinatorial properties of Sturmian words, Theoret. Comput. Sci. 136 (1994), 361-385, doi:10.1016/0304-3975(94)00035- H.
  14. X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001), 539-553, doi:10.1016/S0304-3975(99)00320-5.
  15. S. Ferenczi, C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), 146-161, doi:10.1006/jnth.1997.2175.
  16. S. Fischler, Palindromic prefixes and episturmian words, J. Combin. Theory Ser. A 113 (2006), 1281-1304, doi:10.1016/j.jcta.2005.12.001.
  17. A. Glen, Powers in a class of A-strict standard episturmian words, Theoret. Comput. Sci. 380 (2007), 330-354, doi:10.1016/j.tcs.2007.03.023.
  18. A. Glen, On Sturmian and Episturmian words, and related topics, Ph.D. thesis excerpt, Bull. Australian Math. Soc. 74 (2006), 155-160.
  19. A. Glen, J. Justin, G. Pirillo, A characterization of finite and infinite episturmian words via lexicographic orderings, European J. Combinatorics 29 (2008), 45-58, doi:10.1016/j.ejc.2007.01.002.
  20. O. Jenkinson, L. Q. Zamboni, Characterisations of balanced words via orderings, Theoret. Comput. Sci. 310 (2004), 247-271, doi:10.1016/S0304- 3975(03)00397-9.
  21. J. Justin, Episturmian words and morphisms (results and conjectures), Algebraic combinatorics and Computer Science, Springer Italia, Milan 2001, 533-539.
  22. J. Justin, On a paper by Castelli, Mignosi, Restivo. Theor. Inform. Appl. 34 (2000), 373-377.
  23. J. Justin, G. Pirillo, Episturmian words and episturmian morphisms, Theoret. Comput. Sci. 302 (2003), 1-34, doi:10.1016/S0304-3975(01)00207-9.
  24. J. Justin, G. Pirillo, Episturmian words: shifts, morphisms and numeration systems, Internat. J. Found. Comput. Sci. 15 (2004), 329-348.
  25. J. Justin, L. Vuillon, Return words in Sturmian and Episturmian words, Theor. Inform. Appl. 34 (2000), 343-356.
  26. L. Kari, S. Konstantinidis, P. Sosík, G. Thierrin, On hairpin-free words and languages. In C. De Felice, A. Restivo (Eds.), Developments in Language Theory, Lecture Notes in Computer Science, vol. 3572, Springer, Berlin 2005, 296-307.
  27. M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading MA, 1983. Reprinted by Cambridge University Press, Cambridge UK, 1997.
  28. F. Mignosi, Infinite words with linear subword complexity, Theoret. Comput. Sci. 65 (1989), 221-242, doi:10.1016/0304-3975(89)90046-7.
  29. F. Mignosi, On the number of factors of Sturmian words, Theoret. Comput. Sci. 82 (1991), 71-84, doi:10.1016/0304-3975(91)90172-X.
  30. M. Morse, G. A. Hedlund, Symbolic dynamics II: Sturmian sequences, Amer. J. Math. 62 (1940), 1-42.
  31. G. Rauzy, Mots infinis en arithmétique, in M. Nivat, D. Perrin (Eds.), Automata on Infinite Words, Lecture Notes in Computer Science, vol. 192 (Springer, Berlin 1985) 165-171.
  32. R. Tijdeman, L. Q. Zamboni, Fine and Wilf words for any periods, Indag. math. (N.S.) 14 (2003), 135-147, doi:10.1016/S0019-3577(03)90076-0.
  33. R. Tijdeman, L. Q. Zamboni, Fine and Wilf words for any periods II, preprint (2007).