Ion-Acoustic Waves in Unmagnitized Collisionless Weakly Relativistic Plasma using Time-Fractional KdV Equation (original) (raw)

2010, Arxiv preprint arXiv: …

Abstract

Abstract: The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV) equation for small but finite amplitude electrostatic ion-acoustic waves in unmagnitized collisionless weakly relativistic warm plasma. The Lagrangian of the time ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (25)

  1. Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Physical Review E 53 (1996) 1890.
  2. Riewe, F., Mechanics with fractional derivatives, Physical Review E 55 (1997) 3581.
  3. Agrawal, O. P., Formulation of Euler-Lagrange equations for fractional variational problems, J. Mathematical Analysis and Applications 272 (2002) 368.
  4. Agrawal, O. P., Fractional variational calculus in terms of Riesz frac- tional derivatives J. Physics A: Mathematical and Theoretical 40 (2007) 6287.
  5. Baleanu, D. and Avkar, T., Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, Nuovo Cimento B 119 (2004) 73-79.
  6. Muslih, S. I., Baleanu, D. and Rabei, E., Hamiltonian formulation of classical fields within Riemann-Liouville fractional derivatives, Physica Scripta 73 (2006) 436-438.
  7. Tarasov, V. E. and Zaslavsky, G. M., Fractional Ginzburg-Landau equa- tion for fractal media, Physica A: Statistical Mechanics and Its Appli- cations 354 (2005) 249-261.
  8. Tarasov, V. E. and Zaslavsky, G. M., Nonholonomic constraints with fractional derivatives, J. Physics A: Mathematical and General 39 (2006) 9797-9815.
  9. Sabatier, J., Agrawal, O. P. and Tenreiro Machado, J. A. (editors), Ad- vances in Fractional Calculus, (Springer, Dordrecht, The Netherlands, 2007).
  10. Das, G. C. and Paul, S. N., Phys. Fluids 28 (1985) 823.
  11. Nejoh, Y., The effect of the ion temperature on the ion acoustic soli- tary waves in a collisionless relativistic plasma, J. Plasma Physics 37(3) (1987) 487-495.
  12. El-Labany, S. K., Contribution of higher-order nonlinearity to nonlin- ear ion-acoustic waves in a weakly relativistic warm plasma. Part 1. Isothermal case, J. Plasma Physics 50 (1993) 495.
  13. Washimi, H. and Taniuti, T., Propagation of Ion-Acoustic Solitary Waves of Small Amplitude, Physical Review Letters 17 (1966) 996-998.
  14. Taniuti, T. and Wei, C-C., Reductive Perturbation Method in Nonlinear Wave Propagation. I, J. Physical Society Japan 24 (1968) 941-946.
  15. El-Shewy, E. K., Zahran, M. A., Schoepf, K., Elwakil, S. A., Contribu- tion of higher order dispersion to nonlinear dust-acoustic solitary waves in dusty plasma with different sized dust grains and nonthermal ions, Physica Scripta 78 (2008) 025501.
  16. Podlubny, I., Fractional Differential Equations, (Academic Press, San Diego, 1999).
  17. Babakhani, A. and Gejji, V. D., Existence of positive solutions of non- linear fractional differential equations, J. Mathematical Analysis and Applications 278 (2003) 434-442.
  18. He, J.-H., Approximate analytical solution for seepage flow with frac- tional derivatives in porous media, Computer Methods in Applied Me- chanics and Engineering 167 (1998) 57-68.
  19. He, J.-H., A new approach to nonlinear partial differential equa- tions, Communication Nonlinear Science and Numerical Simulation 2(4) (1997) 230-235.
  20. He, J.-H., Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbo-machinery aero- dynamics, Int. J. Turbo Jet-Engines 14(1) (1997) 23-28.
  21. He, J.-H., Variational principles foe some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals 19 (2004) 847-851.
  22. He, J.-H. and Wu, X.-H., Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, Soli- tons and Fractals 29 (2006) 108-113.
  23. Abulwafa, E. M., Abdou M. A., Mahmoud A. A., The Variational- Iteration Method to Solve the Nonlinear Boltzmann Equation, Zeitschrift für Naturforschung A 63a (2008) 131-139.
  24. Molliq R, Y., Noorani, M. S. M. and Hashim, I., Variational iteration method for fractional heat-and wave-like equations, Nonlinear Analysis: Real World Applications 10 (2009) 1854-1869.
  25. Sweilam, N. H., Khader, M. M. and Al-Bar, R. F., Numerical studies for a multi-order fractional differential equation, Physics Letters A 371 (2007) 26-33.