Contrasting evolutionary origins of two mountain endemics: Saxifraga wahlenbergii (Western Carpathians) and S. styriaca (Eastern Alps) (original) (raw)

Molecular analysis of the Pleistocene history of Saxifraga oppositifolia in the Alps

Molecular Ecology, 2002

A recent circumpolar survey of chloroplast DNA (cpDNA) haplotypes identified Pleistocene glacial refugia for the Arctic-Alpine Saxifraga oppositifolia in the Arctic and, potentially, at more southern latitudes. However, evidence for glacial refugia within the ice sheet covering northern Europe during the last glacial period was not detected either with cpDNA or in another study of S. oppositifolia that surveyed random amplified polymorphic DNA (RAPD) variation. If any genotypes survived in such refugia, they must have been swamped by massive postglacial immigration of periglacial genotypes. The present study tested whether it is possible to reconstruct the Pleistocene history of S. oppositifolia in the European Alps using molecular methods. Restriction fragment length polymorphism (RFLP) analysis of cpDNA of S. oppositifolia , partly sampled from potential nunatak areas, detected two common European haplotypes throughout the Alps, while three populations harboured two additional, rare haplotypes. RAPD analysis confirmed the results of former studies on S. oppositifolia ; high within, but low among population genetic variation and no particular geographical patterning. Some Alpine populations were not perfectly nested in this common gene pool and contained private RAPD markers, high molecular variance or rare cpDNA haplotypes, indicating that the species could possibly have survived on icefree mountain tops (nunataks) in some parts of the Alps during the last glaciation. However, the overall lack of a geographical genetic pattern suggests that there was massive immigration of cpDNA and RAPD genotypes by seed and pollen flow during postglacial times. Thus, the glacial history of S. oppositifolia in the Alps appears to resemble closely that suggested previously for the species in northern Europe.

Phylogeography of the Arctic-Alpine Saxifraga oppositifolia (Saxifragaceae) and some related taxa based on cpDNA and ITS sequence variation

American Journal of Botany, 2003

Saxifraga oppositifolia (Saxifragaceae) is an important model system for the evolution of Arctic-Alpine plant species. Sequences of the psbA-trnH intergenic spacer of chloroplast DNA and of the internal transcribed spacer region, ITS1-5.8S-ITS2, of the nuclear ribosomal DNA were used to investigate the intraspecific evolution and phylogeography of this species. Samples from nearly the species' entire circumpolar distribution were included in the analysis as well as samples from the closely related taxa S. smalliana from Alaska and S. blepharophylla and S. biflora from the Alps (S. aizoides served as outgroup). These latter taxa showed a low number of parsimony informative characters, in both cpDNA and ITS sequences, which separated them from S. oppositifolia. Two main cpDNA haplotypes were detected within S. oppositifolia, one with a Eurasian distribution and one with an East Asian-North American distribution. This confirmed the existence of two cpDNA lineages with different geographical distributions in this species, which had previously been reported based on a RFLP analysis. The ITS phylogeny was not useful with respect to the intraspecific evolution and phylogeography of S. oppositifolia, because it showed a largely unresolved topology with low statistical support. The cpDNA sequence analysis, however, also suggested a putative long-distance dispersal event. All investigated taxa had cpDNA haplotypes that were congruent with their geographical origin rather than their phylogeny. This could point to putative lineage sorting in S. oppositifolia and related taxa.

Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians

Molecular Ecology, 2008

Although many species have similar total distributional ranges, they might be restricted to very different habitats and might have different phylogeographical histories. In the European Alps, our excellent knowledge of the evolutionary history of silicate-dwelling (silicicole) plants is contrasted by a virtual lack of data from limestone-dwelling (calcicole) plants. These two categories exhibit fundamentally different distribution patterns within the Alps and are expected to differ strongly with respect to their glacial history. The calcicole Ranunculus alpestris group comprises three diploid species of alpine habitats. Ranunculus alpestris s. str. is distributed over the southern European mountain system, while R. bilobus and R. traunfellneri are southern Alpine narrow endemics. To explore their phylogenetic relationships and phylogeographical history, we investigated the correlation between information given by nuclear and chloroplast DNA data. Analyses of amplified fragment length polymorphism fingerprints and matK sequences gave incongruent results, indicative for reticulate evolution. Our data highlight historical episodes of range fragmentation and expansion, occasional long-distance dispersal and on-going gene flow as important processes shaping the genetic structure of the group. Genetic divergence, expressed as a rarity index (‘frequency-down-weighted marker values’) seems a better indicator of historical processes than patterns of genetic diversity, which rather mirror contemporary processes as connectivity of populations and population sizes. Three phylogeographical subgroups have been found within the R. alpestris group, neither following taxonomy nor geography. Genetic heterogeneity in the Southern Alps contrasts with Northern Alpine uniformity. The Carpathians have been stepwise-colonised from the Eastern Alpine lineage, resulting in a marked diversity loss in the Southern Carpathians. The main divergence within the group, separating the ancestor of the two endemic species from R. alpestris s. str., predates the Quaternary. Therefore, range shifts produced by palaeoclimatic oscillations seem to have acted on the genetic structure of R. alpestris group on a more regional level, e.g. triggering an allopatric separation of R. traunfellneri from R. bilobus.

Phylogeography ofSyringa josikaea(Oleaceae): Early Pleistocene divergence from East Asian relatives and survival in small populations in the Carpathians

Biological Journal of the Linnean Society, 2015

Tertiary relict plant species of Europe have had a large distribution range before the Pleistocene but today are confined to small refugial areas. Syringa josikaea of the largely East Asian genus Syringa is a shrub of temperate forests in the Carpathians, restricted to altogether 25 small populations in two disjunct areas, the Apuseni Mountains (Romania) and the Ukrainian Carpathians. Miocene and Pleistocene fossil remains indicate the long-term presence of the species in Central Europe; hence S. josikaea has been considered a Tertiary relict. We aimed at clarifying the historical biogeography of S. josikaea by estimating the divergence time between S. josikaea and its Asian relatives, and by analysing intraspecific variation using multiple DNA sequences as well as microsatellites. The estimated divergence time between S. josikaea and its closest relatives based on nuclear ribosomal DNA sequences is 1.88 Mya [0.30-4.04 Mya highest posterior density], suggesting a relatively recent disruption of a formerly continuous distribution area. This time corresponds to the period of Early Pleistocene extinctions, when many Tertiary plant taxa went extinct in Europe. Sequence variation was found to be very low within S. josikaea. Complete identity among all samples in cpDNA may imply a bottleneck. Four different ribotypes found showed no geographic differentiation between the Apuseni Mountains and the Ukrainian Carpathians, and differentiation between these two areas was weak when considering microsatellite variation. Together these observations may imply that the extant disjunct distribution of the species arose only recently, either through colonization from one glacial refugial area or from disruption of one such area.

High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae) indicates long isolation between the Carpathians and the Eastern Alps and Last Glacial survival in several Carpathian regions

Molecular Ecology, 2008

A survey of amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) variation was conducted to elucidate the phylogeography of Campanula alpina, a key species of silicicolous alpine grasslands in the Carpathians with a disjunct distribution in the Eastern European Alps. The Carpathians experienced a different glacial history from the Alps: local glaciers were present only in the highest massifs, while alpine habitats extended over larger areas related to their present distribution in this region. We asked: (i) whether in the Carpathians a high-mountain plant exhibits a complex phylogeographical structure or rather signatures of recent migrations, and (ii) whether the disjunct part of the species' distribution in the Alps resulted from a recent colonization from the Carpathians or from a restricted expansion from separate Eastern Alpine refugia. Our study revealed a clear phylogeographical pattern in AFLPs supported by congruent groups of distinct cpDNA haplotypes. Highest genetic differentiation was observed between the Alps and the Carpathians, indicating a long-term isolation between populations from these two mountain ranges. Further genetic division within the Carpathians suggests that current species' distribution is composed of several groups which have been isolated from each other for a long period. One genetic break separates Western from Southeastern Carpathian material, which is in line with a classical biogeographical boundary. A further, strongly supported genetic group was identified at the southwestern edge of the Carpathian arch. In the Eastern Alps, genetic traces of glacial survival in separate refugial areas in the calcareous northern part and the siliceous central part were found.

Chloroplast DNA phylogeography of the arctic-montane species Saxifraga hirculus (Saxifragaceae)

Heredity, 2006

The genetic structure of populations of an arctic-montane herb, Saxifraga hirculus (Saxifragaceae), was analysed by means of chloroplast restriction fragment-length polymorphism. Sampled populations were distributed across Europe and North America (Alaska and Colorado). There was no evidence for geographically structured genetically divergent lineages, and although no haplotypes were shared between North America and Europe, the haplotypes from different continents were intermixed on a minimum spanning tree. European populations were much more highly differentiated and had much lower levels of haplotype diversity than their Alaskan counterparts. Centres of haplotype diversity were concentrated in those Alaskan populations located outside the limits of the last (Wisconsin) glaciation, suggesting that they may have acted as refugia during the Pleistocene. It was not possible to identify putative migration routes or corresponding refugia in the European genepool. One British population, from the Pentland Hills, was genetically very distant from all the others, for reasons that are as yet unknown.

A Phylogenomic Perspective on Evolution and Discordance in the Alpine-Arctic Plant Clade Micranthes (Saxifragaceae)

Frontiers in Plant Science

The increased availability of large phylogenomic datasets is often accompanied by difficulties in disentangling and harnessing the data. These difficulties may be enhanced for species resulting from reticulate evolution and/or rapid radiations producing large-scale discordance. As a result, there is a need for methods to investigate discordance, and in turn, use this conflict to inform and aid in downstream analyses. Therefore, we drew upon multiple analytical tools to investigate the evolution of Micranthes (Saxifragaceae), a clade of primarily arctic-alpine herbs impacted by reticulate and rapid radiations. To elucidate the evolution of Micranthes we sought near-complete taxon sampling with multiple accessions per species and assembled extensive nuclear (518 putatively single copy loci) and plastid (95 loci) datasets. In addition to a robust phylogeny for Micranthes, this research shows that genetic discordance presents a valuable opportunity to develop hypotheses about its underlying causes, such as hybridization, polyploidization, and range shifts. Specifically, we present a multi-step approach that incorporates multiple checks points for paralogy, including reciprocally blasting targeted genes against transcriptomes, running paralogy checks during the assembly step, and grouping genes into gene families to look for duplications. We demonstrate that a thorough assessment of discordance can be a source of evidence for evolutionary processes that were not adequately captured by a bifurcating tree model, and helped to clarify processes that have structured the evolution of Micranthes.

Molecular evidence for glacial refugia of mountain plants in the European Alps

Molecular Ecology, 2005

Many mountain ranges have been strongly glaciated during the Quaternary ice ages, and the locations of glacial refugia of mountain plants have been debated for a long time. A series of detailed molecular studies, investigating intraspecific genetic variation of mountain plants in the European Alps, now allows for a first synopsis. A comparison of the phylogeographic patterns with geological and palaeoenvironmental data demonstrates that glacial refugia were located along the southwestern, southern, eastern and northern border of the Alps. Additional glacial refugia were present in central Alpine areas, where highelevation plants survived the last glaciation on ice-free mountain tops. The observed intraspecific phylogeographies suggest general patterns of glacial survival, which conform to well-known centres of Alpine species diversity and endemism. This implies that evolutionary or biogeographic processes induced by climatic fluctuations act on gene and species diversity in a similar way.

High genetic differentiation in the alpine plantCampanula alpinaJacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps

Molecular Ecology, 2008

A survey of amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) variation was conducted to elucidate the phylogeography of Campanula alpina, a key species of silicicolous alpine grasslands in the Carpathians with a disjunct distribution in the Eastern European Alps. The Carpathians experienced a different glacial history from the Alps: local glaciers were present only in the highest massifs, while alpine habitats extended over larger areas related to their present distribution in this region. We asked: (i) whether in the Carpathians a high-mountain plant exhibits a complex phylogeographical structure or rather signatures of recent migrations, and (ii) whether the disjunct part of the species' distribution in the Alps resulted from a recent colonization from the Carpathians or from a restricted expansion from separate Eastern Alpine refugia. Our study revealed a clear phylogeographical pattern in AFLPs supported by congruent groups of distinct cpDNA haplotypes. Highest genetic differentiation was observed between the Alps and the Carpathians, indicating a long-term isolation between populations from these two mountain ranges. Further genetic division within the Carpathians suggests that current species' distribution is composed of several groups which have been isolated from each other for a long period. One genetic break separates Western from Southeastern Carpathian material, which is in line with a classical biogeographical boundary. A further, strongly supported genetic group was identified at the southwestern edge of the Carpathian arch. In the Eastern Alps, genetic traces of glacial survival in separate refugial areas in the calcareous northern part and the siliceous central part were found.

Phylogeographical structure of a narrow endemic plant in an isolated high-mountain range

Preslia

Phylogeographical structure of a narrow-endemic plant in an isolated high-mountain range: the case of Cochlearia tatrae in the Tatra Mts (Western Carpathians).-Preslia 93: 125-148. Phylogeographical analyses of alpine species in temperate Europe, distributed in island-like habitats in high-mountain ranges, generally focus on widely distributed species at wide geographical scales. However, genetic diversity and population differentiation in the alpine zone is strongly associated not only with patterns in large-scale isolation, but also local topographic structure of habitats. Regionally endemic species offer the possibility of a realistic overview of genetic diversity in relation to local scale history without the effect of unrecognized external gene flow. Here, we focus on Cochlearia tatrae, a narrow endemic species occurring only within an isolated highmountain area in the Tatra Mts. Based on population sampling across its entire range, AFLP genotyping and DNA sequencing (non-coding plastid DNA and nrITS) this species' genetic structure was assessed in the spatial context of its distribution and discussed in terms of its Late Pleistocene history. Pattern of genetic structure in C. tatrae populations did not include strongly divergent genetic lineages with high levels of unique genetic markers. In the PCoA and Neighbour-Net analyses of AFLP data, individuals formed a genetically coherent complex. However, despite the lack of discontinuities, the general tendency was for them to cluster in a way that reflects individual populations and geographical provenance. Despite the small area of distribution of this species (~80 × 20 km), the Bayesian analysis of population structure revealed four genetic groups, with a latitudinal (east-west) distribution across the Tatra Mts. CpDNA and ITS sequences varied little but localized distribution of several closely related plastid haplotypes mostly supported the delimitation of the genetic groups. Based on this phylogeographical structure it is assumed that the Last Glacial history of C. tatrae was characterized by vertical movements and isolation in peripheral, periglacial microrefugia where the conditions were cold and moist. Subsequent postglacial upslope movements, together with poor dispersal and little gene flow resulted in several genetic lineages distributed longitudinally along the Tatra Mts.