Structure-Guided Optimization of Inhibitors of Acetyltransferase Eis from Mycobacterium tuberculosis (original) (raw)

Structure-Guided Optimization of Inhibitors of Acetyltransferase Eis from Mycobacterium tuberculosis

The enhanced intracellular survival (Eis) protein of Mycobacterium tuberculosis (Mtb) is a versatile acetyltransferase that multiacetylates aminoglycoside antibiotics abolishing their binding to the bacterial ribosome. When overexpressed as a result of promoter mutations, Eis causes drug resistance. In an attempt to overcome the Eis-mediated kanamycin resistance of Mtb, we designed and optimized structurally unique thieno[2,3-d]pyrimidine Eis inhibitors toward effective kanamycin adjuvant combination therapy. We obtained 12 crystal structures of enzyme−inhibitor complexes, which guided our rational structure-based design of 72 thieno[2,3-d]pyrimidine analogues divided into three families. We evaluated the potency of these inhibitors in vitro as well as their ability to restore the activity of kanamycin in a resistant strain of Mtb, in which Eis was upregulated. Furthermore, we evaluated the metabolic stability of 11 compounds in vitro. This study showcases how structural information can guide Eis inhibitor design.

Discovery and Optimization of Two Eis Inhibitor Families as Kanamycin Adjuvants against Drug-Resistant M. tuberculosis

ACS medicinal chemistry letters, 2016

Drug-resistant tuberculosis (TB) is a global threat and innovative approaches such as using adjuvants of anti-TB therapeutics are required to combat it. High-throughput screening yielded two lead scaffolds of inhibitors of Mycobacterium tuberculosis (Mtb) acetyltransferase Eis, whose upregulation causes resistance to the anti-TB drug kanamycin (KAN). Chemical optimization on these scaffolds resulted in potent Eis inhibitors. One compound restored the activity of KAN in a KAN-resistant Mtb strain. Model structures of Eis-inhibitor complexes explain the structure-activity relationship.

Combating Enhanced Intracellular Survival (Eis)-Mediated Kanamycin Resistance of Mycobacterium tuberculosis by Novel Pyrrolo[1,5-a]pyrazine-Based Eis Inhibitors

ACS infectious diseases, 2017

Tuberculosis (TB) remains one of the leading causes of mortality worldwide. Hence, the identification of highly effective antitubercular drugs with novel modes of action is crucial. In this paper, we report the discovery and development of pyrrolo[1,5-a]pyrazine-based analogues as highly potent inhibitors of the Mycobacterium tuberculosis (Mtb) acetyltransferase enhanced intracellular survival (Eis), whose up-regulation causes clinically observed resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN). We performed a structure-activity relationship (SAR) study to optimize these compounds as potent Eis inhibitors both against purified enzyme and in mycobacterial cells. A crystal structure of Eis in complex with one of the most potent inhibitors reveals that the compound is bound to Eis in the AG binding pocket, serving as the structural basis for the SAR. These Eis inhibitors have no observed cytotoxicity to mammalian cells and are promising leads for the development of in...

Combating Enhanced Intracellular Survival (Eis)-Mediated Kanamycin Resistance of Mycobacterium tuberculosis by Novel Pyrrolo[1,5-a]pyrazine-Based Eis Inhibitors

ACS Infectious Diseases, 2017

Tuberculosis (TB) remains one of the leading causes of mortality worldwide. Hence, the identification of highly effective antitubercular drugs with novel modes of action is crucial. In this paper, we report the discovery and development of pyrrolo[1,5-a]pyrazine-based analogues as highly potent inhibitors of the Mycobacterium tuberculosis (Mtb) acetyltransferase enhanced intracellular survival (Eis), whose up-regulation causes clinically observed resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN). We performed a structure-activity relationship (SAR) study to optimize these compounds as potent Eis inhibitors both against purified enzyme and in mycobacterial cells. A crystal structure of Eis in complex with one of the most potent inhibitors reveals that the compound is bound to Eis in the AG binding pocket, serving as the structural basis for the SAR. These Eis inhibitors have no observed cytotoxicity to *

Potent 1,2,4-Triazino[5,6 b]indole-3-thioether Inhibitors of the Kanamycin Resistance Enzyme Eis from Mycobacterium tuberculosis

ACS infectious diseases, 2018

A common cause of resistance to kanamycin (KAN) in tuberculosis is overexpression of the enhanced intracellular survival (Eis) protein. Eis is an acetyltransferase that multiacetylates KAN and other aminoglycosides, rendering them unable to bind the bacterial ribosome. By high-throughput screening, a series of substituted 1,2,4-triazino[5,6 b]indole-3-thioether molecules were identified as effective Eis inhibitors. Herein, we purchased 17 and synthesized 22 new compounds, evaluated their potency, and characterized their steady-state kinetics. Four inhibitors were found not only to inhibit Eis in vitro, but also to act as adjuvants of KAN and partially restore KAN sensitivity in a Mycobacterium tuberculosis KAN-resistant strain in which Eis is upregulated. A crystal structure of Eis in complex with a potent inhibitor and CoA shows that the inhibitors bind in the aminoglycoside binding site snugly inserted into a hydrophobic cavity. These inhibitors will undergo preclinical developmen...

Sulfonamide-Based Inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in Mycobacterium tuberculosis

Journal of medicinal chemistry, 2016

A two-drug combination therapy where one drug targets an offending cell and the other targets a resistance mechanism to the first drug is a time-tested, yet underexploited approach to combat or prevent drug resistance. By high-throughput screening, we identified a sulfonamide scaffold that served as a pharmacophore to generate inhibitors of Mycobacterium tuberculosis acetyltransferase Eis, whose upregulation causes resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN) in Mycobacterium tuberculosis. Rational systematic derivatization of this scaffold to maximize Eis inhibition and abolish the Eis-mediated KAN resistance of M. tuberculosis yielded several highly potent agents. A crystal structure of Eis in complex with one of the most potent inhibitors revealed that the inhibitor bound Eis in the AG-binding pocket held by a conformationally malleable region of Eis (residues 28-37) bearing key hydrophobic residues. These Eis inhibitors are promising leads for preclinical d...

Design of Thymidine Analogues Targeting Thymidilate Kinase of Mycobacterium tuberculosis

Tuberculosis Research and Treatment, 2013

We design here new nanomolar antituberculotics, inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt), by means of structure-based molecular design. 3D models of TMPKmt-inhibitor complexes have been prepared from the crystal structure of TMPKmt cocrystallized with the natural substrate deoxythymidine monophosphate (dTMP) (1GSI) for a training set of 15 thymidine analogues (TMDs) with known activity to prepare a QSAR model of interaction establishing a correlation between the free energy of complexation and the biological activity. Subsequent validation of the predictability of the model has been performed with a 3D QSAR pharmacophore generation. The structural information derived from the model served to design new subnanomolar thymidine analogues. From molecular modeling investigations, the agreement between free energy of complexation (ΔΔ com ) and values explains 94% of the TMPKmt inhibition ( = −0.2924ΔΔ com + 3.234; 2 = 0.94) by variation of the computed ΔΔ com and 92% for the pharmacophore (PH4) model ( = 1.0206× pred −0.0832, 2 = 0.92). The analysis of contributions from active site residues suggested substitution at the 5-position of pyrimidine ring and various groups at the 5 -position of the ribose. The best inhibitor reached a predicted of 0.155 nM. The computational approach through the combined use of molecular modeling and PH4 pharmacophore is helpful in targeted drug design, providing valuable information for the synthesis and prediction of activity of novel antituberculotic agents.

New active leads for tuberculosis booster drugs by structure-based drug discovery

Organic and Biomolecular Chemistry, 2017

The transcriptional repressor EthR from Mycobacterium tuberculosis, a member of the TetR family of prokaryotic homodimeric transcriptions factors, controls the expression of the mycobacterial mono-oxygenase EthA. EthA is responsible for the bio-activation of the second-line tuberculosis pro-drug ethionamide, and consequently EthR inhibitors boost drug efficacy. Here, we present a comprehensive in-silico structure-based screening protocol that led to the identification of a number of novel scaffolds of EthR inhibitors in subsequent biophysical screening by thermal shift assay. Growth inhibition assays demonstrated five of the twenty biophysical hits were capable of boosting ethionamide activity in vitro, with the best novel scaffold displaying an EC50 of 34 µM. In addition, the co-crystal structures of EthR with four new ligands at resolution ranging from 2.1 to 1.4 Å confirm the binding and inactivation mode, and will enable future lead development.