Self-Assembly of a Triazolylferrocenyl Dendrimer in Water Yields Nontraditional Intrinsic Green Fluorescent Vesosomes for Nanotheranostic Applications (original) (raw)

Journal of the American Chemical Society, 2021

Abstract

The promising field of nanomedicine stimulates a continuous search for multifunctional nanotheranostic systems for imaging and drug delivery. Herein, we demonstrate that application of supramolecular chemistry's concepts in dendritic assemblies can enable the formation of advanced dendrimer-based nanotheranostic devices. A dendrimer bearing 81 triazolylferrocenyl terminal groups adopts a more compact shell-like structure in polar solvents with the ferrocenyl peripheral groups backfolding toward the hydrophobic dendrimer interior, while exposing the more polar triazole moieties as the dendritic shell. Akin to lipids, the compact dendritic structure self-assembles into uniform nanovesicles that in turn self-assemble into larger vesosomes in water. The vesosomes emit green nontraditional intrinsic fluorescence (NTIL), which is an emerging property as there are no classical fluorophores in the dendritic macromolecular structure. This work confirms the hypothesis that the NTIL emission is greatly enhanced by rigidification of the supramolecular assemblies containing heteroatomic subluminophores (HASLs) and by the presence of electron rich functional groups on the periphery of dendrimers. This work is the first one detecting NTIL in ferrocenyl-terminated dendrimers. Moreover, the vesosomes are stable in biological medium, are uptaken by cells, and show cytotoxic activity against cancer cells. Accordingly, the self-organization of these dendrimers into tertiary structures promotes the emergence of new properties enabling the same component, in this case, ferrocenyl group, to function as both antitumoral drug and fluorophore.

Didier Astruc hasn't uploaded this paper.

Let Didier know you want this paper to be uploaded.

Ask for this paper to be uploaded.