Deep Eutectic Solvents for Innovative Pharmaceutical Formulations (original) (raw)

Abstract

Finding alternative solvents for industrial processes, such as chemical synthesis or extraction of biologically active molecules that are less toxic and more environmentally friendly than the organic solvents used up to now, is a major societal issue. These alternative solvents are often described as "green, biodegradable" solvents. Deep eutectic solvents, which are mixtures of simple and often naturally occurring compounds, have been extensively studied in this regard. Among their possible applications, there has been increasing interest in their use for the preparation of pharmaceutical formulations. Indeed, by changing the nature and ratio of their components, deep eutectic solvents can be adapted to a wide range of active molecules, from poorly soluble small molecules to labile macromolecules. The use of deep eutectic solvents to solubilize active molecules with low aqueous solubility and/or low permeability could be an alternative approach to increase their dissolution and in-vivo absorption. This could result in significant increases of bioavailability or enhanced therapeutic efficacy of currently marketed drugs. Moreover, deep eutectic solvents can be used to limit phenomena like polymorphism or degradation which present a challenge to drug formulation. However, despite being generally described as biodegradable and nontoxic due to the nature of their constituents, the safety of deep eutectic solvents, which possess both novel physico-chemical and biological properties, cannot be taken for granted and must therefore be carefully studied during development stages. Therefore, this chapter presents not only recent progress in the application of deep eutectic solvents in the development of formulations for improving therapeutic efficacy by different routes of administration but also studies that have been undertaken to investigate the toxicity of deep eutectic solvents to both living organisms and the environment.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (116)

  1. Abbott AP, Ahmed EI, Prasad K, Qader IB, Ryder KS (2017) Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilib, 448: 2-8. https://doi.org/10.1016/j.fluid.2017.05.009
  2. Abranches DO, Larriba M, Silva LP, Melle-Franco M, Palomar JF, Pinho SP, Coutinho JAP (2019) Using COSMO-RS to design choline chloride pharmaceutical eutectic solvents. Fluid Phase Equilib, 497: 71-78. https://doi.org/10.1016/j.fluid.2019.06.005
  3. El Achkar T, Moufawad T, Ruellan S, Landy D, Greige-Gerges H, Fourmentin S (2020) Cyclodextrins: from solute to solvent. Chem Commun, in press. https://doi.org/10.1039/D0CC00460J
  4. Adawiyah N, Moniruzzaman M, Hawatulaila S, Goto M (2016) Ionic liquids as a potential tool for drug delivery systems. Med Chem Commun, 7: 1881-189. https://doi.org/10.1039/C6MD00358C
  5. Ahmadi R, Hemmateenejad B, Safavi A, Shojaeifard Z, Mohabbati M, Firuzi O (2018) Assessment of cytotoxicity of choline chloride-based natural deep eutectic solvents against human HEK-293 cells: A QSAR analysis. Chemosphere, 209: 821-838. https://doi.org/10.1016/j.chemosphere.2018.06.103
  6. Agatemor C, Ibsen KN, Tanner EE, Mitragotri S (2018) Ionic liquids for addressing unmet needs in healthcare. Bioeng Transl Med, 3: 7-25. https://doi.org/10.1002/btm2.10083
  7. Aroso IM, Craveiro R, Rocha Â, Dionísio M, Barreiros S, Reis RL, Paiva A, Duarte AR (2015) Design of controlled release systems for THEDES-Therapeutic deep eutectic solvents, using supercritical fluid technology. Int J Pharm, 492: 73-79. https://doi.org.10.1016/j.ijpharm.2015.06.038
  8. Aroso IM, Silva JC, Mano F, Ferreira AS, Dionísio M, Sá-Nogueira I, Barreiros S, Reis RL, Paiva A, Duarte AR (2016) Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur J Pharm Biopharm, 98: 57-66. https://doi.org/10.1016/j.ejpb.2015.11.002
  9. Banerjee A, Ibsen K, Iwao Y, Zakrewsky M, Mitragotri S (2017) Transdermal protein delivery using choline and geranate (CAGE) deep eutectic solvent. Adv Healthc Mater, 6: 1601411. https://doi.org/10.1002/adhm.201601411
  10. Banerjee A, Ibsen K, Brown T, Chen R, Agatemor C, Mitragotri S (2018a) Ionic liquids for oral insulin delivery. Proc Natl Acad Sci USA, 115: 7296-7301. https://doi.org/10.1073/pnas.1722338115
  11. Banerjee A, Ibsen K, Brown T, Chen R, Agatemor C, Mitragotri S (2018b) Reply to Rogers and Gurau: definitions of ionic liquids and deep eutectic solvents. Proc Natl Acad Sci USA, 115: E11000-E11001. https://doi.org/10.1073/pnas.1815526115
  12. Barros AA, Silva JM, Craveiro R, Paiva A, Reis RL, Duarte ARC (2017) Green solvents for enhanced impregnation processes in biomedicine. Curr Opin Green Sustain Chem, 5: 82-87. https://doi.org/10.1016/j.cogsc.2017.03.014
  13. Benlebna M, Ruesgas-Ramón M, Bonafos B, Fouret G, Casas F, Coudray C, Durand E, Cruz Figueroa-Espinoza M, Feillet-Coudray C (2018) Toxicity of natural deep eutectic solvent betaine:glycerol in rats. J Agric Food Chem, 66: 6205-6212. https://doi.org/10.1021/acs.jafc.8b01746
  14. Chen J, Li SF, Yao ZF, Yanga DW, Zhang LW (2016) Improved stability of salvianolic acid B from Radix Salviae miltiorrhizae in deep eutectic solvents. Ana Methods, 8: 2502-2509. https://doi.org/10.1039/C5AY03351A
  15. Chen J, Wang Q, Liu M, Zhang L (2017) The effect of deep eutectic solvent on the pharmacokinetics of salvianolic acid B in rats and its acute toxicity test. J Chromatogr B Analyt Technol Biomed Life Sci, 1063: 60-66. https://doi.org/10.1016/j.jchromb.2017.08.016
  16. Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp GJ, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiology, 156: 1701-1705. https://doi.org/10.1104/pp.111.178426
  17. Colombo Dugoni G, Di Pietro ME, Ferro M, Castiglione F, Ruellan S, Moufawad T, Moura L, Costa Gomes MF, Fourmentin S, Mele A (2019) Effect of water on deep eutectic solvent/β-cyclodextrin systems. ACS Sustainable Chem Eng, 7: 7277-7285. https://doi.org/10.1021/acssuschemeng.9b00315
  18. Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta, 766: 61-68. https://doi.org/10.1016/j.aca.2012.12.019
  19. Dai Y, Witkamp GJ, Verpoorte R, Choi YH (2015) Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem, 187: 14-19. https://doi.org/10.1016/j.foodchem.2015.03.123
  20. Duarte AR, Ferreira AS, Barreiros S, Cabrita E, Reis RL, Paiva A (2017) A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: solubility and permeability studies. Eur J Pharm Biopharm, 114: 296-304. https://doi.org/10.1016/j.ejpb.2017.02.003
  21. Durand E, Lecomte J, Villeneuve P (2016) From green chemistry to nature: The versatile role of low transition temperature mixtures. Biochimie, 120: 119-123. https://doi.org/10.1016/j.biochi.2015.09.019
  22. Durand E, Lecomte J, Upasani R, Chabi B, Bayrasy C, Baréa B, Jublanc E, Clarke MJ, Moore DJ, Crowther J, Wrutniak-Cabello C, Villeneuve P (2017) Evaluation of the ROS inhibiting activity and mitochondrial targeting of phenolic compounds in fibroblast cells model system and enhancement of efficiency by natural deep eutectic solvent (NADES) formulation. Pharm Res, 34: 1134-1146. https://doi.org/10.1007/s11095-017-2124-4
  23. Esquembre R, Sanz JM, Wall JG, del Monte F, Mateo CR, Ferrer ML (2013) Thermal unfolding and refolding of lysozyme in deep eutectic solvents and their aqueous dilutions. Phys Chem Chem Phys, 15: 11248-11256. https://doi.org/10.1039/c3cp44299c
  24. Faggian M, Sut S, Perissutti B, Baldan V, Grabnar I, Dall'Acqua S (2016) Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: possible application in nutraceuticals. Molecules, 21: E1531. https://doi.org/10.3390/molecules21111531
  25. Florindo C, Celia-Silva LG, Martins LFG Branco LC, Marrucho IM (2018) Supramolecular hydrogel based on a sodium deep eutectic solvent. Chem Commun, 54: 7527-7530. https://doi.org/10.1039/c8cc03266a
  26. Fourmentin S, Landy D, Cunha Gomes de Moura LM, Tilloy S, Bricout H, Ferreira M (2018) Procédé d'épuration d'un effluent gazeux. FR3058905.
  27. Fu N, Li L, Liu K, Kim CK, Li J, Zhu T, Li J, Tang B (2019) A choline chloride-acrylic acid deep eutectic solvent polymer based on Fe3O4 particles and MoS2 sheets (poly(ChCl-AA DES)@Fe3O4@MoS2) with specific recognition and good antibacterial properties for β- lactoglobulin in milk. Talanta, 197: 567-577. https://doi.org/10.1016/j.talanta.2019.01.072
  28. Gállego I, Grover MA, Hud NV (2015) Folding and imaging of DNA nanostructures in anhydrous and hydrated deep-eutectic solvents. Angew Chem Int Ed Engl, 54: 6765-6769. https://doi.org/10.1002/anie.201412354
  29. Gautam RK, Ahmed SA, Seth D (2018) Photophysics of thioflavin T in deep eutectic solvents. J Lumin, 198: 508-516. https://doi.org/10.1016/j.jlumin.2018.02.055
  30. Gutiérrez A, Atilhan M, Aparicio S (2018) A theoretical study on lidocaine solubility in deep eutectic solvents. Phys Chem Chem Phys, 20: 27464-27473. https://doi.org/10.1039/c8cp05641b
  31. Gutiérrez A, Aparicio S, Atilhan M (2019) Design of arginine-based therapeutic deep eutectic solvents as drug solubilization vehicles for active pharmaceutical ingredients. Phys Chem Chem Phys, 21: 10621-10634. https://doi.org/10.1039/c9cp01408j
  32. Halder AK, Natalia M, Cordeiro DS (2019) Probing the environmental toxicity of deep eutectic solvents and their components: an in silico modeling approach. ACS Sustainable Chem Eng, 7: 10649-10660. https://doi.org/10.1021/acssuschemeng.9b01306
  33. Haraźna K, Walas K, Urba ska P, Witko T, Snoch W, Siemek A, achimska B, Krzan M, Napruszewska BD, Witko M, Bednarz S, Guzik M (2019) Polyhydroxyalkanoate-derived hydrogen-bond donors for the synthesis of new deep eutectic solvents. Green Chem, 21: 3116-3126. https://doi.org/10.1039/C9GC00387H
  34. Harifi-Mood AR, Ghobadi R, Divsalar A (2017) The effect of deep eutectic solvents on catalytic function and structure of bovine liver catalase. Int J Biol Macromol, 95: 115-120. https://doi.org/10.1016/j.ijbiomac.2016.11.043
  35. Hattori T, Tagawa H, Inai M, Kan T, Kimura S, Itai S, Mitragotri S, Iwao Y (2019) Transdermal delivery of nobiletin using ionic liquids. Sci Rep, 9: 20191. https://doi.org/10.1038/s41598-019-56731-1
  36. Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM, Mirghani ME, Saheed OK (2013) Are deep eutectic solvents benign or toxic? Chemosphere, 90: 2193-2195. https://doi.org/10.1016/j.chemosphere.2012.11.004
  37. Hayyan M, Looi CY, Hayyan A, Wong WF, Hashim MA (2015) In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. PLoS ONE, 10: e0117934. https://doi.org/10.1371/journal.pone.0117934
  38. Hayyan M, Mbous YP, Looi CY, Wong WF, Hayyan A, Salleh Z, Mohd-Ali O (2016) Natural deep eutectic solvents: cytotoxic profile. Springerplus, 5: 913. https://doi.org/10.1186/s40064-016-2575-9
  39. Ibsen KN, Ma H, Banerjee A, Tanner EEL, Nangia S, Mitragotri S (2018) Mechanism of antibacterial activity of choline-based ionic liquids (CAGE). ACS Biomater Sci Eng, 4: 2370- 2379. https://doi.org/10.1021/acsbiomaterials.8b00486 eli ski T, Przybyłek M, Cysewski P (2019a) Solubility advantage of sulfanilamide and sulfacetamide in natural deep eutectic systems: experimental and theoretical investigations. Drug Dev Ind Pharm, 45: 1120-1129. https://doi.org/10.1080/03639045.2019.1597104 eli ski T, Przybyłek M, Cysewski P (2019b) Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm Res, 36: 116. https://doi.org/10.1007/s11095-019-2643-2
  40. Juneidi I, Hayyan M, Mohd Ali O (2016) Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish. Environ Sci Pollut Res Int, 23: 7648- 7659. https://doi.org/10.1007/s11356-015-6003-4
  41. Kellar R, Nieto NC, Koppisch A, Del Sesto R (2018) Ionic liquids that sterilize and prevent biofilm formation in skin wound healing devices. US20180093011.
  42. Khodaverdian S, Dabirmanesh B, Heydari A, Dashtban-Moghadam E, Khajeh K, Ghazi F (2018) Activity, stability and structure of laccase in betaine based natural deep eutectic solvents. Int J Biol Macromol, 107: 2574-2579. https://doi.org/10.1016/j.ijbiomac.2017.10.144
  43. Lee MS, Lee K, Nam MW, Jeong KM, Lee JE, Kim NW, Yin Y, Lim SY, Yoo DE, Lee J, Jeong JH (2018) Natural deep eutectic solvents as a storage medium for human interferon-α2: a green and improved strategy for room-temperature biologics. J Ind Eng Chem, 65: 343-348. https://doi.org/10.1016/j.jiec.2018.05.005
  44. Li Y, Wu X, Zhu Q, Chen Z, Lu Y, Qi J, Wu W (2019) Improving the hypoglycemic effect of insulin via the nasal administration of deep eutectic solvents. Int J Pharm, 569: 118584. https://doi.org/10.1016/j.ijpharm.2019.118584
  45. Li Z, Lee PI (2016) Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives. Int J Pharm, 505: 283-288. https://doi.org/10.1016/j.ijpharm.2016.04.018
  46. Lim JH, Song SH, Park HS, Lee JR, Lee SM (2017) Spontaneous detachment of Streptococcus mutans biofilm by synergistic effect between zwitterion and sugar alcohol. Sci Rep, 7: 8107. https://doi.org/10.1038/s41598-017-08558-x
  47. Lim JH, Jeong Y, Song SH, Ahn JH, Lee JR, Lee SM (2018) Penetration of an antimicrobial zinc-sugar alcohol complex into Streptococcus mutans biofilms. Sci Rep, 8: 16154. https://doi.org/10.1038/s41598-018-34366-y
  48. Lu C, Cao J, Wang N, Su E (2016) Significantly improving the solubility of non-steroidal anti-inflammatory drugs in deep eutectic solvents for potential non-aqueous liquid administration. Med Chem Commun, 7: 955-959. https://doi.org/10.1039/C5MD00551E
  49. Macário IPE, Jesus F, Pereira JL, Ventura SPM, Gonçalves AMM, Coutinho JAP, Gonçalves FJM (2018a) Unraveling the ecotoxicity of deep eutectic solvents using the mixture toxicity theory. Chemosphere, 212: 890-897. https://doi.org/10.1016/j.chemosphere.2018.08.153
  50. Macário IPE, Ventura SPM, Pereira JL, Gonçalves AMM, Coutinho JAP, Gonçalves FJM (2018b) The antagonist and synergist potential of cholinium-based deep eutectic solvents. Ecotoxicol Environ Saf, 165: 597-602. https://doi.org/10.1016/j.ecoenv.2018.09.027
  51. Macário IPE, Oliveira H, Menezes AC, Ventura SPM, Pereira JL, Gonçalves AMM, Coutinho JAP, Gonçalves FJM (2019) Cytotoxicity profiling of deep eutectic solvents to human skin cells. Sci Rep, 9: 3932. https://doi.org.10.1038/s41598-019-39910-y
  52. Mamashli F, Badraghi J, Delavari B, Lanjanian H, Sabbaghian M, Hosseini M, Saboury AA (2018) Improvement of versatile peroxidase activity and stability by a cholinium-based ionic liquid. J Mol Liq, 272: 597-608. https://doi.org/10.1016/j.molliq.2018.09.128
  53. Mao S, Li K, Hou Y, Liu Y, Ji S, Qin H, Lu F (2018) Synergistic effects of components in deep eutectic solvents relieve toxicity and improve the performance of steroid biotransformation catalyzed by Arthrobacter simplex. J Chem Technol Biotechnol, 93: 2729- 2736. https://doi.org/10.1002/jctb.5629
  54. Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA (2017) Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems. Sci Rep, 7: 41257. https://doi.org/10.1038/srep41257
  55. McCune A, Kunz S, Olesi ska M, Scherman OA (2017) DESolution of CD and CB macrocycles. Chem Eur J, 23: 8601-8604. https://doi.org/10.1002/chem.201701275
  56. Mitar A, Panić M, Prlić Kardum , Halambek , Sander A, Zagajski Ku an K, Radoj ić Redovniković I, Radošević K (2019) Physicochemical properties, cytotoxicity, and antioxidative activity of natural deep eutectic solvents containing organic acid. Chem Biochem Eng Q, 33: 1-18. https://doi.org/10.15255/CABEQ.2018.1454
  57. Mokhtarpour M, Shekaari H, Martinez F, Zafarani-Moattar MT (2019a) Study of naproxen in some aqueous solutions of choline-based deep eutectic solvents: Solubility measurements, volumetric and compressibility properties. Int J Pharm, 564: 197-206. https://doi.org/10.1016/j.ijpharm.2019.04.029
  58. Mokhtarpour M, Shekaari H, Martinez F, Zafarani-Moattar MT (2019b) Effect of tetrabutylammonium bromide-dased deep eutectic solvents on the aqueous solubility of indomethacin at various temperatures: measurement, modeling, and prediction with three- dimensional Hansen solubility parameters. AAPS PharmSciTech, 20: 204. https://doi.org/10.1208/s12249-019-1373-4
  59. Morrison HG, Sun CC, Neervannan S (2009) Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int J Pharm, 378: 136-139. https://doi.org/10.1016/j.ijpharm.2009.05.039
  60. Moufawad T, Moura L, Ferreira M, Bricout H, Tilloy S, Monflier E, Costa Gomes M, Landy D, Fourmentin S (2019) First evidence of cyclodextrin inclusion complexes in a deep eutectic solvent. ACS Sustainable Chem Eng, 7: 6345-6351. https://doi.org/10.1021/acssuschemeng.9b00044
  61. Moura L, Moufawad T, Ferreira M, Bricout H, Tilloy S, Monflier E, Costa Gomes MF, Landy D, Fourmentin S (2017) Deep eutectic solvents as green absorbents of volatile organic pollutants. Environ Chem Lett, 15: 747-753. https://doi.org/10.1007/s10311-017-0654-y Nascimento PAM, Picheli FP, Lopes AM, Pereira JFB, Santos-Ebinuma VC (2019) Effects of cholinium-based ionic liquids on Aspergillus niger lipase: Stabilizers or inhibitors. Biotechnol Prog, 35: e2838. https://doi.org/10.1002/btpr.2838
  62. Niknaddaf F, Shahangian SS, Heydari A, Hosseinkhani S, Sajedi RH (2018) Deep eutectic solvents as a new generation of chemical chaperones. ChemistrySelect, 3: 10603-10607. https://doi.org/10.1002/slct.201802235
  63. Nurunnabi M, Ibsen KN, Tanner EEL, Mitragotri S (2019) Oral ionic liquid for the treatment of diet-induced obesity. Proc Natl Acad Sci USA, 116: 25042-25047. https://doi.org/10.1073/pnas.1914426116
  64. Olivares B, Martínez F, Rivas L, Calderón C, M Munita J, R Campodonico P (2018) A natural deep eutectic solvent formulated to stabilize β-lactam antibiotics. Sci Rep, 8: 14900. https://doi.org/10.1038/s41598-018-33148-w
  65. Palmelund H, Andersson MP, Asgreen CJ, Boyd BJ, Rantanen J, Löbmann K (2019) Tailor- made solvents for pharmaceutical use? Experimental and computational approach for determining solubility in deep eutectic solvents (DES). Int J Pharm: X, 1: 100034. https://doi.org/10.1016/j.ijpx.2019.100034
  66. Pedro SN, Freire MG, Freire CSR, Silvestre AJD (2019) Deep eutectic solvents comprising active pharmaceutical ingredients in the development of drug delivery systems. Expert Opin Drug Deliv, 16: 497-506. https://doi.org/10.1080/17425247.2019.1604680
  67. Pereira CV, Silva JM, Rodrigues L, Reis RL, Paiva A, Duarte ARC, Matias A (2019) Unveil the anticancer potential of limomene based therapeutic deep eutectic solvents. Sci Re., 9: 14926. https://doi.org/10.1038/s41598-019-51472-7
  68. Potticary J, Hall C, Hamilton V, McCabe JF, Hall SR (2019) Deep eutomic solvents. https://arxiv.org/abs/1902.08376v2
  69. Pradeepkumar P, Rajendran NK, Alarfaj AA, Munusamy MA, Rajan M (2018) Deep eutectic solvent-mediated FA-g-β-Alanine-co-PCL drug carrier for sustainable and site-specific drug delivery. ACS Appl Bio Mater, 6: 2094-2109. https://doi.org/10.1021/acsabm.8b00554
  70. Pradeepkumar P, Sangeetha R, Gunaseelan S, Varalakshmi P, A Chuturgoon A, Rajan M (2019a) Folic acid conjugated polyglutamic acid drug vehicle synthesis through deep eutectic solvent for targeted release of paclitaxel. ChemistrySelect, 4: 10225-10235. https://doi.org/10.1002/slct.201902256
  71. Pradeepkumar P, Subbiah A, Rajan M (2019b) Synthesis of bio-degradable poly(2- hydroxyethyl methacrylate) using natural deep eutectic solvents for sustainable cancer drug delivery. SN Applied Sciences, 1: 568. https://doi.org/10.1007/s42452-019-0591-4
  72. Qi QM, Mitragotri S (2019) Mechanistic study of transdermal delivery of macromolecules assisted by ionic liquids. J Control Release, 311-312: 162-169. https://doi.org/10.1016/j.jconrel.2019.08.029
  73. Qu W, Häkkinen R, Allen , D'Agostino C, Abbott AP (2019) Globular and fibrous proteins modified with deep eutectic solvents: materials for drug delivery. Molecules, 24: 3583. https://doi.org/10.3390/molecules24193583
  74. Radošević K, Bubalo MC, Sr ek VG, Grgas D, Dragi ević TL, Redovniković IR (2015) Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf, 112: 46-53. https://doi.org/10.1016/j.ecoenv.2014.09.034
  75. Radošević K, Ćurko N, Sr ek VG, Bubalo MC, Tomašević M, Ganić KK, Redovniković IR (2016) Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT -Food Science and Technology, 73: 45-51. https://doi.org/10.1016/j.lwt.2016.05.037
  76. Radošević K, Čanak I, Panić M, Markov K, Bubalo MC, Frece , Sr ek VG, Redovniković IR (2018) Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environ Sci Pollut Res Int, 25: 14188-14196. https://doi.org/10.1007/s11356-018-1669-z Rogers RD, Gurau G (2018) Is "choline and geranate" an ionic liquid or deep eutectic solvent system? Proc Natl Acad Sci USA, 115: E10999. https://doi.org/10.1073/pnas.1814976115
  77. Rozema E, van Dam AD, Sips HCM, Verpoorte R, Meijer OC, Kooijman S, Choi YH (2015) Extending pharmacological dose-response curves for salsalate with natural deep eutectic solvents. RSC Adv, 5: 61398-61401. https://doi.org/10.1039/C5RA10196D
  78. Sadaf A, Kumari A, Khare SK (2018) Potential of ionic liquids for inhibiting the growth and β-lactamase production by Bacillus cereus EMB20. Int J Biol Macromol, 107: 1915-1921. https://doi.org/10.1016/j.ijbiomac.2017.10.053
  79. Sanchez-Fernandez A, Edler KJ, Arnold T, Alba Venero D, Jackson AJ (2017) Protein conformation in pure and hydrated deep eutectic solvents. Phys Chem Chem Phys, 19: 8667- 8670. https://doi.org/10.1039/c7cp00459a
  80. Santos F, Leitão MIPS, Duarte ARC (2019) Properties of therapeutic deep eutectic solvents of L-arginine and ethambutol for tuberculosis treatment. Molecules, 24: 55. https://doi.org/10.3390/molecules24010055
  81. Santos de Almeida T, Júlio A, Saraiva N, Fernandes AS, Araújo MEM, Baby AR, Rosado C, Mota JP (2017) Choline-versus imidazole-based ionic liquids as functional ingredients in topical delivery systems: cytotoxicity, solubility, and skin permeation studies. Drug Dev Ind Pharm, 43: 1858-1865. https://doi.org/10.1080/03639045.2017.1349788
  82. Scherman OA, McCune JA (2018) Deep eutectic solvent compositions. WO2018167315.
  83. Shamseddin A, Crauste C, Durand E, Villeneuve P, Dubois G, Durand T, Vercauteren J, Veas F (2017) Resveratrol formulated with a natural deep eutectic solvent inhibits active matrix metalloprotease-9 in hormetic conditions. Eur J Lipid Sci Technol, 119: 1700171. https://doi.org/10.1002/ejlt.201700171
  84. Shekaari H, Zafarani-Moattar MT, Mokhtarpour M (2017) Solubility, volumetric and compressibility properties of acetaminophen in some aqueous solutions of choline based deep eutectic solvents at T=(288.15 to 318.15) K. Eur J Pharm Sci, 109: 121-130. https://doi.org/10.1016/j.ejps.2017.07.021
  85. Shekaari H, Zafarani-Moattar MT, Mokhtarpour M (2018a) Experimental determination and correlation of acetaminophen solubility in aqueous solutions of choline chloride based deep eutectic solvents at various temperatures. Fluid Phase Equilib, 462: 100-110. https://doi.org/10.1016/j.fluid.2018.01.017
  86. Shekaari H, Zafarani-Moattar MT, Shayanfar A, Mokhtarpour M (2018b) Effect of choline chloride/ethylene glycol or glycerol as deep eutectic solvents on the solubility and thermodynamic properties of acetaminophen. J Mol Liq, 249: 1222-1235. https://doi.org/10.1016/j.molliq.2017.11.057
  87. Shekaari H, Zafarani-Moattar MT, Mokhtarpour M, Faraji S (2019) Exploring cytotoxicity of some choline-based deep eutectic solvents and their effect on the solubility of lamotrigine in aqueous media. J Mol Liq, 283: 834-842. https://doi.org/10.1016/j.molliq.2019.03.079
  88. Sidat Z, Marimuthu T, Kumar P, du Toit LC, Kondiah PPD, Choonara YE, Pillay V (2019) Ionic liquids as potential synergistic permeation enhancers for transdermal drug delivery. Pharmaceutics, 11: 96. https://doi.org/10.3390/pharmaceutics11020096
  89. Silva NHCS, Pinto RJB, Martins MA, Ferreira R, Correia I, Freire CSR, Marrucho IM (2018a) Ionic liquids as promoters of fast lysozyme fibrillation. J Mol Liq, 272: 456-467. https://doi.org/10.1016/j.molliq.2018.08.064
  90. Silva NHCS, Vilela C, Pinto RJB, Martins MA, Marrucho IM, Freire CSR (2018b) Tuning lysozyme nanofibers dimensions using deep eutectic solvents for improved reinforcement ability. Int J Biol Macromol, 115: 518-527. https://doi.org/10.1016/j.ijbiomac.2018.03.150
  91. Silva JM, Silva E, Reis RL, Duarte ARC (2019) A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustain Chem Pharm, 14: 100192. https://doi.org/10.1016/j.scp.2019.100192
  92. Sivapragasam M, Wilfred CD, Jaganathan JR, Krishnan S, Ghani WAWAK (2019) Choline- based ionic liquids as media for the growth of Saccharomyces cerevisiae. Processes, 7: 471. https://doi.org/10.3390/pr7070471
  93. Stott PW, Williams AC, Barry BW (1998) Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J Control Release, 50: 297-308. https://doi.org/10.1016/S0168-3659(97)00153-3
  94. Su E, Klibanov AM (2015) Low-transition-temperature mixtures (LTTMs) for dissolving proteins and for drug formulation. Appl Biochem Biotechnol, 177: 753-758. https://doi.org/10.1007/s12010-015-1777-x
  95. Sut S, Faggian M, Baldan V, Poloniato G, Castagliuolo I, Grabnar I, Perissutti B, Brun P, Maggi F, Voinovich D, Peron G, Dall'Acqua S (2017) Natural deep eutectic solvents (NADES) to enhance Berberine absorption: an in vivo pharmacokinetic study. Molecules, 22: E1921. https://doi.org/10.3390/molecules22111921
  96. Tang N, Zhong J, Yan W (2016) Solubilities of Three Flavonoids in Different Natural Deep Eutectic Solvents at T = (288.15 to 328.15) K. J Chem Eng Data, 61: 4203-4208. https://doi.org/10.1021/acs.jced.6b00552
  97. Tanner EEL, Ibsen KN, Mitragotri S (2018) Transdermal insulin delivery using choline-based ionic liquids (CAGE). J Control Release, 286: 137-144. https://doi.org/10.1016/j.jconrel.2018.07.029
  98. Tanner EEL, Curreri AM, Balkaran JP1, Selig-Wober NC, Yang AB, Kendig C, Fluhr MP, Kim N, Mitragotri S (2019) Design principles of ionic liquids for transdermal drug delivery. Adv Mater, 31: e1901103. https://doi.org/10.1002/adma.201901103
  99. Tarate B, Bansal AK (2015) Characterization of CoQ 10-lauric acid eutectic system. Thermochim Acta, 605: 100-106. https://doi.org/10.1016/j.tca.2015.01.018
  100. Tateishi-Karimata H, Sugimoto N (2014) Structure, stability and behaviour of nucleic acids in ionic liquids. Nucleic Acids Res, 42: 8831-8844. https://doi.org/10.1093/nar/gku499
  101. Tønnesen HH, Wikene KO (2016) Eutectic solvents and uses thereof. WO2016108083.
  102. Torregrosa-Crespo J, Marset X, Guillena G, Ramón DJ, María Martínez-Espinosa R (2020) New guidelines for testing "Deep eutectic solvents" toxicity and their effects on the environment and living beings. Sci Total Environ, 704: 135382. https://doi.org/10.1016/j.scitotenv.2019.135382
  103. Vanda H, Dai Y, Wilson EG, Verpoorte R, Choi YH (2018) Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. C.R. Chimie, 21: 628-638. https://doi.org/10.1016/j.crci.2018.04.002
  104. Wang J, Dong X, Yu Q, Baker SN, Li H, Larm NE, Baker GA, Chen L, Tan J, Chen M (2017) Incorporation of antibacterial agent derived deep eutectic solvent into an active dental composite. Dent Mater, 33: 1445-1455. https://doi.org/10.1016/j.dental.2017.09.014
  105. Wen Q, Chen JX, Tang YL, Wang J, Yang Z (2015) Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere, 132: 63-69. https://doi.org/10.1016/j.chemosphere.2015.02.061
  106. Wikene KO, Bruzell E, Tønnesen HH (2015a) Characterization and antimicrobial phototoxicity of curcumin dissolved in natural deep eutectic solvents. Eur J Pharm Sci, 80: 26-32. https://doi.org/10.1016/j.ejps.2015.09.013
  107. Wikene KO, Bruzell E, Tønnesen HH (2015b) Improved antibacterial phototoxicity of a neutral porphyrin in natural deep eutectic solvents. J Photochem Photobiol B, 148: 188-196. https://doi.org/10.1016/j.jphotobiol.2015.04.022
  108. Wikene KO, Rukke HV, Bruzell E, Tønnesen HH (2016) Physicochemical characterisation and antimicrobial phototoxicity of an anionic porphyrin in natural deep eutectic solvents. Eur J Pharm Biopharm, 105: 75-84. https://doi.org/10.1016/j.ejpb.2016.06.001
  109. Wikene KO, Rukke HV, Bruzell E, Tønnesen HH (2017) Investigation of the antimicrobial effect of natural deep eutectic solvents (NADES) as solvents in antimicrobial photodynamic therapy. J Photochem Photobiol B, 171: 27-33. https://doi.org/10.1016/j.jphotobiol.2017.04.030
  110. Wojnarowska Z, Smolka W, Zotova J, Knapik-Kowalczuk J, Sherif A, Tajber L, Paluch M (2018) The effect of electrostatic interactions on the formation of pharmaceutical eutectics. Phys Chem Chem Phys, 20: 27361-27367. https://doi.org/10.1039/c8cp05905e
  111. Wolbert F, Brandenbusch C, Sadowski G (2019) Selecting excipients forming therapeutic deep eutectic systems -a mechanistic approach. Mol Pharm, 16: 3091-3099. https://doi.org/10.1021/acs.molpharmaceut.9b00336
  112. Zakrewsky M, Lovejoy KS, Kern TL, Miller TE, Le V, Nagy A, Goumas AM, Iyer RS, Del Sesto RE, Koppisch AT, Fox DT, Mitragotri S (2014) Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc Natl Acad Sci USA, 111: 13313- 13318. https://doi.org/10.1073/pnas.1403995111
  113. Zakrewsky M, Mitragotri S, Fox DT, Koppisch A, Del Sesto R, Lovejoy K (2015) Ionic liquids for transdermal drug delivery. WO2015066647.
  114. Zakrewsky M, Banerjee A, Apte S, Kern TL, Jones MR, Sesto RE, Koppisch AT, Fox DT, Mitragotri S (2016b) Choline and geranate deep eutectic solvent as a broad-spectrum antiseptic agent for preventive and therapeutic applications. Adv Healthc Mater, 5: 1282- 1289. https://doi.org/10.1002/adhm.201600086
  115. Zakrewsky M, Mitragotri S, Fox DT, Koppisch A, Del Sesto R, Lovejoy K (2016b) Ionic liquids for transdermal drug delivery. US20160263225.
  116. Zhang Y, Du C, Cong Y, Xue Y, Qiao B, Ye T, Wang M (2019) Solubility increment and thermodynamic analysis of bioactive antofloxacin hydrochloride in aqueous ChCl/PTS deep eutectic solvent and cosolvent mixtures. J Chem Eng Data, 64: 5748-5754. https://doi.org/10.1021/acs.jced.9b00717