Peptide Deformylase in Staphylococcus aureus : Resistance to Inhibition Is Mediated by Mutations in the Formyltransferase Gene (original) (raw)
2000, Antimicrobial Agents and Chemotherapy
Abstract
Peptide deformylase, a bacterial enzyme, represents a novel target for antibiotic discovery. Two deformylase homologs, defA and defB , were identified in Staphylococcus aureus . The defA homolog, located upstream of the transformylase gene, was identified by genomic analysis and was cloned from chromosomal DNA by PCR. A distinct homolog, defB , was cloned from an S. aureus genomic library by complementation of the arabinose-dependent phenotype of a P BAD -def Escherichia coli strain grown under arabinose-limiting conditions. Overexpression in E. coli of defB , but not defA , correlated to increased deformylase activity and decreased susceptibility to actinonin, a deformylase-specific inhibitor. The defB gene could not be disrupted in wild-type S. aureus , suggesting that this gene, which encodes a functional deformylase, is essential. In contrast, the defA gene could be inactivated; the function of this gene is unknown. Actinonin-resistant mutants grew slowly in vitro and did not sh...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (33)
- Adams, J. M. 1968. On the release of the formyl group from nascent protein. J. Mol. Biol. 33:571-589.
- Altschul, S. F., T. L. Madden, A. A. Scha ¨ffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.
- Becker, A., I. Schlichting, W. Kabsch, D. Groche, S. Schultz, and A. F. Wagner. 1998. Iron center, substrate recognition and mechanism of peptide deformylase. Nat. Struct. Biol. 5:1053-1058.
- Becker, A., I. Schlichting, W. Kabsch, S. Schultz, and A. F. Wagner. 1998. Structure of peptide deformylase and identification of the substrate binding site. J. Biol. Chem. 273:11413-11416.
- Bianchetti, R., G. Lucchini, P. Crosti, and P. Tortora. 1977. Dependence of mitochondrial protein synthesis initiation on formylation of the initiator methionyl-tRNAf. J. Biol. Chem. 252:2519-2523.
- Breidt, F. J., and G. C. Stewart. 1987. Nucleotide and deduced amino acid sequences of the Staphylococcus aureus phospho-beta-galactosidase gene. Appl. Environ. Microbiol. 53:969-973.
- Bru ¨ckner, R. 1997. Gene replacement in Staphylococcus carnosus and Staph- ylococcus xylosus. FEMS Microbiol. Lett. 151:1-8.
- Chen, D. Z., P. Patel, C. J. Hackbarth, W. Wang, G. Dreyer, D. C. Young, P. S. Margolis, C. Wu, Z.-J. Ni, J. Trias, R. J. White, and Z. Yuan. 2000. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39:1256-1262.
- Dardel, F., S. Ragusa, C. Lazennec, S. Blanquet, and T. Meinnel. 1998. Solution structure of nickel-peptide deformylase. J. Mol. Biol. 280:501-513.
- Ford, C. W., J. C. Hamel, D. Stapert, and R. J. Yancey. 1989. Establishment of an experimental model of a Staphylococcus aureus abscess in mice by use of dextran and gelatin microcarriers. J. Med. Microbiol. 28:259-266.
- Guillon, J. M., Y. Mechulam, J. M. Schmitter, S. Blanquet, and G. Fayat. 1992. Disruption of the gene for Met-tRNA(fMet) formyltransferase se- verely impairs growth of Escherichia coli. J. Bacteriol. 174:4294-4301.
- Kennedy, S., and H. F. Chambers. 1989. Daptomycin (LY146032) for pre- vention and treatment of experimental aortic valve endocarditis in rabbits. Antimicrob. Agents Chemother. 33:1522-1525.
- Kozak, M. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234:187-208.
- Kreiswirth, B. N., S. Lo ¨fdahl, M. J. Betley, M. O'Reilly, P. M. Schlievert, M. S. Bergdoll, and R. P. Novick. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709- 712.
- Lazennec, C., and T. Meinnel. 1997. Formate dehydrogenase-coupled spec- trophotometric assay of peptide deformylase. Anal. Biochem. 244:180-182.
- Link, A. J., D. Phillips, and G. M. Church. 1997. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J. Bacteriol. 179:6228- 6237.
- Mahler, H. R., K. Dawidowicz, and F. Feldman. 1972. Formate as a specific label for mitochondrial translational products. J. Biol. Chem. 247:7439-7442.
- Mazel, D., E. Cou ¨c, S. Blanchard, W. Saurin, and P. Marlie `re. 1997. A survey of polypeptide deformylase function throughout the eubacterial lin- eage. J. Mol. Biol. 266:939-949.
- Mazel, D., S. Pochet, and P. Marliere. 1994. Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J. 13:914-923.
- Meinnel, T., and S. Blanquet. 1994. Characterization of the Thermus ther- mophilus locus encoding peptide deformylase and methionyl-tRNA(fMet) formyltransferase. J. Bacteriol. 176:7387-7390.
- Meinnel, T., and S. Blanquet. 1993. Evidence that peptide deformylase and methionyl-tRNA (fMet) formyltransferase are encoded within the same operon in Escherichia coli. J. Bacteriol. 175:7737-7740.
- Meinnel, T., S. Blanquet, and F. Dardel. 1996. A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase. J. Mol. Biol. 262:375-386.
- Meinnel, T., C. Lazennec, and S. Blanquet. 1995. Mapping of the active site zinc ligands of peptide deformylase. J. Mol. Biol. 254:175-183.
- Meinnel, T., C. Lazennec, S. Villoing, and S. Blanquet. 1997. Structure- function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion. J. Mol. Biol. 267:749-761.
- National Committee for Clinical Laboratory Standards. 1997. Methods for dilution antimicrobial tests for bacteria that grow aerobically. Approved standard M7-A4, 4th ed. National Committee for Clinical Laboratory Stan- dards, Wayne, Pa.
- Newton, D. T., C. Creuzenet, and D. Mangroo. 1999. Formylation is not essential for initiation of protein synthesis in all eubacteria. J. Biol. Chem. 274:22143-22146.
- Niemeyer, D. M., M. J. Pucci, J. A. Thanassi, V. K. Sharma, and G. L. Archer. 1996. Role of mecA transcriptional regulation in the phenotypic expression of methicillin resistance in Staphylococcus aureus. J. Bacteriol. 178:5464-5471.
- Novick, R. P. 1991. Genetic systems in staphylococci. Methods Enzymol. 204:587-636.
- Ochman, H., A. S. Gerber, and D. L. Hartl. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120:621-623.
- Rajagopalan, P. T., A. Datta, and D. Pei. 1997. Purification, characterization, and inhibition of peptide deformylase from Escherichia coli. Biochemistry 36:13910-13918.
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
- Thomas, W. D. J., and G. L. Archer. 1989. Identification and cloning of the conjugative transfer region of Staphylococcus aureus plasmid pGO1. J. Bac- teriol. 171:684-691.
- Wada, A., and H. Watanabe. 1998. Penicillin-binding protein 1 of Staphylo- coccus aureus is essential for growth. J. Bacteriol. 180:2759-2765.