Functional Analyses of Rare Germline Missense BRCA1 Variants Located within and outside Protein Domains with Known Functions (original) (raw)
Related papers
Human Molecular Genetics, 2001
Germline mutations in the breast and ovarian cancer susceptibility gene BRCA1 are responsible for the majority of cases involving hereditary breast and ovarian cancer. Whereas all truncating mutations are considered as functionally deleterious, most of the missense variants identified to date cannot be readily distinguished as either disease-associated mutations or benign polymorphisms. The C-terminal domain of BRCA1 displays an intrinsic transactivation activity, and mutations linked to disease predisposition have been shown to confer loss of such activity in yeast and mammalian cells. In an attempt to clarify the functional importance of the BRCA1 C-terminus as a transcription activator in cancer predisposition, we have characterized the effect of C-terminal germline variants identified in Scandinavian breast and ovarian cancer families. Missense variants A1669S, C1697R, R1699W, R1699Q, A1708E, S1715R and G1738E and a truncating mutation, W1837X, were characterized using yeast-and mammalian-based transcription assays. In addition, four additional missense variants and D1733G) and one in-frame deletion (V1688del) were included in the study. Our findings demonstrate that transactivation activity may reflect a tumorsuppressing function of BRCA1 and further support the role of BRCA1 missense mutations in disease predisposition. We also report a discrepancy between results from yeast-and mammalian-based assays, indicating that it may not be possible to unambiguously characterize variants with the yeast assay alone. We show that transcription-based assays can aid in the characterization of deleterious mutations in the C-terminal part of BRCA1 and may form the basis of a functional assay.
2007
Germ line inactivating mutations in BRCA1 confer susceptibility for breast and ovarian cancer. However, the relevance of the many missense changes in the gene for which the effect on protein function is unknown remains unclear. Determination of which variants are causally associated with cancer is important for assessment of individual risk. We used a functional assay that measures the transactivation activity of BRCA1 in combination with analysis of protein modeling based on the structure of BRCA1 BRCT domains. In addition, the information generated was interpreted in light of genetic data. We determined the predicted cancer association of 22 BRCA1 variants and verified that the common polymorphism S1613G has no effect on BRCA1 function, even when combined with other rare variants. We estimated the specificity and sensitivity of the assay, and by meta-analysis of 47 variants, we show that variants with <45% of wild-type activity can be classified as deleterious whereas variants with >50% can be classified as neutral. In conclusion, we did functional and structure-based analyses on a large series of BRCA1 missense variants and defined a tentative threshold activity for the classification missense variants. By interpreting the validated functional data in light of additional clinical and structural evidence, we conclude that it is possible to classify all missense variants in the BRCA1 COOH-terminal region. These results bring functional assays for BRCA1 closer to clinical applicability.
Classification of BRCA1 Missense Variants of Unknown Clinical Significance
Journal of medical …, 2005
Background:BRCA1 is a tumour suppressor with pleiotropic actions. Germline mutations in BRCA1 are responsible for a large proportion of breastovarian cancer families. Several missense variants have been identified throughout the gene but because of lack of information about their ...
Cancer research, 2010
Genetic screening of the breast and ovarian cancer susceptibility gene BRCA1 has uncovered a large number of variants of uncertain clinical significance. Here, we use biochemical and cellbased transcriptional assays to assess the structural and functional defects associated with a large set of 117 distinct BRCA1 missense variants within the essential BRCT domain of the BRCA1 protein that have been documented in individuals with a family history of breast or ovarian cancer. In the first method, we used limited proteolysis to assess the protein folding stability of each of the mutants compared with the wild-type. In the second method, we used a phosphopeptide pull-down assay to assess the ability of each of the variants to specifically interact with a peptide containing a pSer-X-X-Phe motif, a known functional target of the BRCA1 BRCT domain. Finally, we used transcriptional assays to assess the ability of each BRCT variant to act as a transcriptional activation domain in human cells. Through a correlation of the assay results with available family history and clinical data, we define limits to predict the disease risk associated with each variant. Forty-two of the variants show little effect on function and are likely to represent variants with little or no clinical significance; 50 display a clear functional effect and are likely to represent pathogenic variants; and the remaining 25 variants display intermediate activities. The excellent agreement between the structure/function effects of these mutations and available clinical data supports the notion that functional and structure information can be useful in the development of models to assess cancer risk.
PLoS ONE, 2014
Germline inactivating variants in BRCA1 lead to a significantly increased risk of breast and ovarian cancers in carriers. While the functional effect of many variants can be inferred from the DNA sequence, determining the effect of missense variants present a significant challenge. A series of biochemical and cell biological assays have been successfully used to explore the impact of these variants on the function of BRCA1, which contribute to assessing their likelihood of pathogenicity. It has been determined that variants that co-localize with structural or functional motifs are more likely to disrupt the stability and function of BRCA1. Here we assess the functional impact of 37 variants chosen to probe the functional impact of variants in phosphorylation sites and in the BRCT domains. In addition, we perform a meta-analysis of 170 unique variants tested by the transcription activation assays in the carboxy-terminal domain of BRCA1 using a recently developed computation model to provide assessment for functional impact and their likelihood of pathogenicity.
Background Inactivating germline mutations in the tumour suppressor gene BRCA1 are associated with a significantly increased risk of developing breast and ovarian cancer. A large number (>1500) of unique BRCA1 variants have been identified in the population and can be classified as pathogenic, non-pathogenic or as variants of unknown significance (VUS). Many VUS are rare missense variants leading to single amino acid changes. Their impact on protein function cannot be directly inferred from sequence information, precluding assessment of their pathogenicity. Thus, functional assays are critical to assess the impact of these VUS on protein activity. BRCA1 is a multifunctional protein and different assays have been used to assess the impact of variants on different biochemical activities and biological processes.
BRCA1 Circos: a visualisation resource for functional analysis of missense variants
Journal of medical genetics, 2015
Inactivating germline mutations in the tumour suppressor gene BRCA1 are associated with a significantly increased risk of developing breast and ovarian cancer. A large number (>1500) of unique BRCA1 variants have been identified in the population and can be classified as pathogenic, non-pathogenic or as variants of unknown significance (VUS). Many VUS are rare missense variants leading to single amino acid changes. Their impact on protein function cannot be directly inferred from sequence information, precluding assessment of their pathogenicity. Thus, functional assays are critical to assess the impact of these VUS on protein activity. BRCA1 is a multifunctional protein and different assays have been used to assess the impact of variants on different biochemical activities and biological processes. To facilitate VUS analysis, we have developed a visualisation resource that compiles and displays functional data on all documented BRCA1 missense variants. BRCA1 Circos is a web-base...
BMC Cancer
Background Damaging alterations in the BRCA1 gene have been extensively described as one of the main causes of hereditary breast and ovarian cancer (HBOC). BRCA1 alterations can lead to impaired homologous recombination repair (HRR) of double-stranded DNA breaks, a process which involves the RING, BRCT and coiled-coil domains of the BRCA1 protein. In addition, the BRCA1 protein is involved in transcriptional activation (TA) of several genes through its C-terminal BRCT domain. Methods In this study, we have investigated the effect on HRR and TA of 11 rare BRCA1 missense variants classified as variants of uncertain clinical significance (VUS), located within or in close proximity to the BRCT domain, with the aim of generating additional knowledge to guide the correct classification of these variants. The variants were selected from our previous study “BRCA1 Norway”, which is a collection of all BRCA1 variants detected at the four medical genetic departments in Norway. Results All vari...