Management of Upper-Limb Spasticity Using Modern Rehabilitation Techniques versus Botulinum Toxin Injections Following Stroke (original) (raw)
Related papers
BMC Neurology
Background It is common for people with persistent spasticity due to a stroke to receive an injection of botulinum toxin-A in the upper limb, however post-injection intervention varies. Aim To determine the long-term effect of additional upper limb rehabilitation following botulinum toxin-A in chronic stroke. Method An analysis of long-term outcomes from national, multicenter, Phase III randomised trial with concealed allocation, blinded measurement and intention-to-treat analysis was carried out. Participants were 140 stroke survivors who were scheduled to receive botulinum toxin-A in any muscle(s) that cross the wrist because of moderate to severe spasticity after a stroke greater than 3 months ago, who had completed formal rehabilitation and had no significant cognitive impairment. Experimental group received botulinum toxin-A plus 3 months of evidence-based movement training while the control group received botulinum toxin-A plus a handout of exercises. Primary outcomes were goa...
Effect of Additional Rehabilitation After Botulinum Toxin-A on Upper Limb Activity in Chronic Stroke
Stroke, 2019
Background and Purpose— The aim of this trial was to determine the effect of additional upper limb rehabilitation following botulinum toxin-A for upper limb activity in chronic stroke. Methods— We conducted a multicenter phase III randomized trial with concealed allocation, blinded measurement, and intention-to-treat analysis. One hundred forty stroke survivors who were scheduled to receive botulinum toxin-A in any muscle(s) that cross the wrist because of moderate to severe spasticity after a stroke >3 months ago, who had completed formal rehabilitation and had no significant cognitive impairment. Experimental group received botulinum toxin-A plus evidence-based movement training while the control group received botulinum toxin-A plus a handout of exercises. Primary outcomes were goal attainment (Goal Attainment Scaling) and upper limb activity (Box and Block Test) at 3 months (end of intervention). Secondary outcomes were spasticity, range of motion, strength, pain, burden of c...
Journal of Neurology & Neurophysiology, 2013
Search of relevant studies was conducted on MEDLINE (from 1995 to July 2012), the Cochrane Central Register of Controlled Trials and EMBASE (1995 to July 2012). Search terms varied slightly across databases but included: "cerebrovascular accident" or "stroke" and the terms "botulinum toxin", "spasticity" as either MeSH terms, key words, or subject headings. Only randomized studies (RT) treating patients with UL post-stroke spasticity by BTX-A injection were included. Studies of treatment for both lower and/or UL spasticity were included if the results for patients with UL spasticity were reported separately. Prospective open label, case series, cohort studies and case reports were excluded. Furthermore, because confounding results, RTs were also excluded whether: i) post-stroke spasticity was treated by different serotype neurotoxin; ii) botulinum toxin was given early after the stroke, before clinical evidence of severe spasticity was established; iii) mixed sample of subjects with spasticity secondary to stroke or other neurological disorders was enrolled; iv) spasticity followed a non-Abstract Objective: Botulinum toxin type A (BTX-A) use reduces upper limb (UL) spasticity in stroke patients, but the effects on functional recovery remain uncertain. The aim of present review was to ascertain if the reduction of spasticity by use of BTX-A was linked to a functional gain of UL or in activity of daily living in post-stroke patients.
Effect of Additional Rehabilitation After Botulin Toxin-A on Upper Limb Activity in Chronic Stroke
Stroke
Background and Purpose— The aim of this trial was to determine the effect of additional upper limb rehabilitation following botulinum toxin-A for upper limb activity in chronic stroke. Methods— We conducted a multicenter phase III randomized trial with concealed allocation, blinded measurement, and intention-to-treat analysis. One hundred forty stroke survivors who were scheduled to receive botulinum toxin-A in any muscle(s) that cross the wrist because of moderate to severe spasticity after a stroke >3 months ago, who had completed formal rehabilitation and had no significant cognitive impairment. Experimental group received botulinum toxin-A plus evidence-based movement training while the control group received botulinum toxin-A plus a handout of exercises. Primary outcomes were goal attainment (Goal Attainment Scaling) and upper limb activity (Box and Block Test) at 3 months (end of intervention). Secondary outcomes were spasticity, range of motion, strength, pain, burden of c...
Neurology international, 2018
The aim was to investigate if botulinum toxin type A (BTx-A) associated with physical therapy is superior to physical therapy alone in post stroke spasticity. A randomized, double-blinded controlled trial was performed in a rehabilitation unit on Northeastern, Brazil. Patients with post stroke spasticity were enrolled either to BTx-A injections and a pre-defined program of physical therapy or saline injections plus physical therapy. Primary endpoint was functional performance evaluated through time up and go test, six minutes walking test and Fugl-Meyer scale for upper limb. Secondary endpoint was spasticity improvement. Confidence interval was considered at 95%. Although there was a significant decrease in upper limbs flexor tonus (P<0.05) in the BTx-A group, there was no difference regarding functional performance after 9 months of treatment. When analyzing gait speed and performance, both groups showed a significant improvement in the third month of treatment, however it was n...
Frontiers in Neurology
Background: The combined use of Robot-assisted UL training and Botulinum toxin (BoNT) appear to be a promising therapeutic synergism to improve UL function in chronic stroke patients. Objective: To evaluate the effects of Robot-assisted UL training on UL spasticity, function, muscle strength and the electromyographic UL muscles activity in chronic stroke patients treated with Botulinum toxin. Methods: This single-blind, randomized, controlled trial involved 32 chronic stroke outpatients with UL spastic hemiparesis. The experimental group (n = 16) received robot-assisted UL training and BoNT treatment. The control group (n = 16) received conventional treatment combined with BoNT treatment. Training protocols lasted for 5 weeks (45 min/session, two sessions/week). Before and after rehabilitation, a blinded rater evaluated patients. The primary outcome was the Modified Ashworth Scale (MAS). Secondary outcomes were the Fugl-Meyer Assessment Scale (FMA) and the Medical Research Council Scale (MRC). The electromyographic activity of 5 UL muscles during the "hand-to-mouth" task was explored only in the experimental group and 14 healthy age-matched controls using a surface Electromyography (EMGs). Results: No significant between-group differences on the MAS and FMA were measured. The experimental group reported significantly greater improvements on UL muscle strength (p = 0.004; Cohen's d = 0.49), shoulder abduction (p = 0.039; Cohen's d = 0.42), external rotation (p = 0.019; Cohen's d = 0.72), and elbow flexion (p = 0.043; Cohen's d = 1.15) than the control group. Preliminary observation of muscular activity showed a different enhancement of the biceps brachii activation after the robot-assisted training. Gandolfi et al. Robot-Assisted Training for Upper Limb Spasticity Conclusions: Robot-assisted training is as effective as conventional training on muscle tone reduction when combined with Botulinum toxin in chronic stroke patients with UL spasticity. However, only the robot-assisted UL training contributed to improving muscle strength. The single-group analysis and the qualitative inspection of sEMG data performed in the experimental group showed improvement in the agonist muscles activity during the hand-to-mouth task.
Trials, 2014
Background: Patients surviving stroke but who have significant impairment of function in the affected arm are at more risk of developing pain, stiffness and contractures. The abnormal muscle activity, associated with post-stroke spasticity, is thought to be causally associated with the development of these complications. Treatment of spasticity is currently delayed until a patient develops signs of these complications. Methods/Design: This protocol is for a phase II study that aims to identify whether using OnabotulinumtoxinA (BoNT-A) in combination with physiotherapy early post stroke when initial abnormal muscle activity is neurophysiologically identified can prevent loss of range at joints and improve functional outcomes. The trial uses a screening phase to identify which people are appropriate to be included in a double blind randomised placebo-controlled trial. All patients admitted to Sandwell and West Birmingham NHS Trust Hospitals with a diagnosis of stroke will be screened to identify functional activity in the arm. Those who have no function will be appropriate for further screening. Patients who are screened and have abnormal muscle activity identified on EMG will be given electrical stimulation to forearm extensors for 3 months and randomised to have either injections of BoNT-A or normal saline. The primary outcome measure is the action research arm test-a measure of arm function. Further measures include spasticity, stiffness, muscle strength and fatigue as well as measures of quality of life, participation and caregiver strain.
The Medical journal of Malaysia, 2007
Botulinum toxin is effective in reducing spasticity post stroke. As there are limited data on post stroke spasticity in Asia, we undertake this study to determine the effectiveness and safety of intramuscular injection of botulinum toxin type-A (BTX-A), in the treatment of chronic focal post-stroke hand spasticity, and the impact of BTX-A on the activities of daily living and quality of life, in comparison to placebo, in Malaysian stroke patients. This was a randomized, double-blind, placebo-controlled study to assess the efficacy and safety of BTX-A in 27 subjects with wrist and finger spasticity after a stroke. The outcome measures were assessed with the Modified Ashworth Scale (MAS) to assess spasticity of the flexor muscles, Barthel Index (BI) for activities of daily living and EQ-5D and EQ VAS for quality of life. Assessments were performed at baseline and 1 and 3 months after injection. Compared to placebo, the BTX-A group had greater improvement in the flexor tone of the wris...