Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis (original) (raw)

Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta‐Analysis of Prospective Studies

Journal of the American Heart Association, 2017

Background Gut microbial metabolites have been implicated as novel risk factors for cardiovascular events and premature death. The strength and consistency of associations between blood concentrations of the gut microbial metabolites, trimethylamine‐N‐oxide ( TMAO ) and its precursors, with major adverse cardiovascular events ( MACE ) or death have not been comprehensively assessed. We quantified associations of blood concentrations of TMAO and its precursors with risks of MACE and mortality. Methods and Results PubMed and Embase databases were searched up, and a total of 19 prospective studies from 16 publications (n=19 256, including 3315 incident cases) with quantitative estimates of the associations of TMAO with the development of MACE or death were included in our main analysis. Multivariate‐adjusted relative risks ( RR s) were used when these were available. Elevated concentrations of TMAO were associated with a pooled RR of 1.62 (95% CI, 1.45, 1.80; P heterogeneity =0.2; I 2 ...

Diet, Fecal Microbiome, and Trimethylamine N-Oxide in a Cohort of Metabolically Healthy United States Adults

Nutrients

TMAO is elevated in individuals with cardiometabolic diseases, but it is unknown whether the metabolite is a biomarker of concern in healthy individuals. We conducted a cross-sectional study in metabolically healthy adults aged 18–66 years with BMI 18–44 kg/m2 and assessed the relationship between TMAO and diet, the fecal microbiome, and cardiometabolic risk factors. TMAO was measured in fasted plasma samples by liquid chromatography mass spectrometry. The fecal microbiome was assessed by 16S ribosomal RNA sequencing and recent food intake was captured by multiple ASA24 dietary recalls. Endothelial function was assessed via EndoPAT. Descriptive statistics were computed by fasting plasma TMAO tertiles and evaluated by ANOVA and Tukey’s post-hoc test. Multiple linear regression was used to assess the relationship between plasma TMAO and dietary food intake and metabolic health parameters. TMAO concentrations were not associated with average intake of animal protein foods, fruits, vege...

Gut Microbiota-Derived Metabolites and Cardiovascular Disease Risk: A Systematic Review of Prospective Cohort Studies

Nutrients

Gut microbiota-derived metabolites have recently attracted considerable attention due to their role in host-microbial crosstalk and their link with cardiovascular health. The MEDLINE-PubMed and Elsevier’s Scopus databases were searched up to June 2022 for studies evaluating the association of baseline circulating levels of trimethylamine N-oxide (TMAO), secondary bile acids, short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs), tryptophan and indole derivatives, with risk of cardiovascular disease (CVD). A total of twenty-one studies were included in the systematic review after evaluating 1210 non-duplicate records. There were nineteen of the twenty-one studies that were cohort studies and two studies had a nested case–control design. All of the included studies were of high quality according to the “Newcastle–Ottawa Scale”. TMAO was positively associated with adverse cardiovascular events and CVD/all-cause mortality in some, but not all of the included studies. Bile ...

Microbial trimethylamine-N-oxide as a disease marker: something fishy?

Microbial ecology in health and disease, 2017

Production of trimethylamine-N-oxide (TMAO) via the gut microbiota has recently been proposed as an important pathophysiological mechanism linking ingestion of 'unhealthy foods', such as beef (containing carnitine) and eggs (containing choline), and the development of atherosclerosis. Hence, TMAO has gained attention as a novel biomarker for cardiovascular disease. However, fish and seafood contain considerable amounts of TMAO and are generally accepted as cardioprotective: a puzzling paradox that seems to have been neglected. We suspect that the TMAO story may be a red herring.

Trimethylamine N-oxide: heart of the microbiota–CVD nexus?

Nutrition Research Reviews, 2020

We critically review potential involvement of trimethylamine N-oxide (TMAO) as a link between diet, the gut microbiota and CVD. Generated primarily from dietary choline and carnitine by gut bacteria and hepatic flavin-containing mono-oxygenase (FMO) activity, TMAO could promote cardiometabolic disease when chronically elevated. However, control of circulating TMAO is poorly understood, and diet, age, body mass, sex hormones, renal clearance, FMO3 expression and genetic background may explain as little as 25 % of TMAO variance. The basis of elevations with obesity, diabetes, atherosclerosis or CHD is similarly ill-defined, although gut microbiota profiles/remodelling appear critical. Elevated TMAO could promote CVD via inflammation, oxidative stress, scavenger receptor up-regulation, reverse cholesterol transport (RCT) inhibition, and cardiovascular dysfunction. However, concentrations influencing inflammation, scavenger receptors and RCT (≥100 µm) are only achieved in advanced heart...

Metagenomic data-mining reveals enrichment of trimethylamine-N-oxide synthesis in gut microbiome in atrial fibrillation patients

BMC Genomics, 2020

Background The gut bacteria-derived metabolite trimethylamine-N-oxide (TMAO) has been discussed in various cardiometabolic diseases. However, evidence characterizing the microbial population responsible for TMAO accumulation in patients with atrial fibrillation (AF), an increasingly prevalent arrhythmia, is yet lacking. In order to understand the key gut microorganisms that produce TMAO in AF, trimethylamine (TMA)-synthesis enzymes and metabolic pathways, as well as the potential TMA-producers in gut microbiome were assessed based on metagenomic data-mining in a northern Chinese cohort consisting of 50 non-AF controls and 50 patients with different types of AF. Results Compared to the control subjects, AF patients showed a marked increase in the microbial genes underlying TMA formation in the gut, which included 12 potential TMA-synthesis functional orthologs and 1 module. The specific bacterial genes, including choline-TMA lyase, carnitine monooxygenase, glycine betaine reductase, ...

Gut microbiota dependant trimethylamine N-oxide and hypertension

Frontiers in Physiology

The human gut microbiota environment is constantly changing and some specific changes influence the host’s metabolic, immune, and neuroendocrine functions. Emerging evidence of the gut microbiota’s role in the development of cardiovascular disease (CVD) including hypertension is remarkable. There is evidence showing that alterations in the gut microbiota and especially the gut-dependant metabolite trimethylamine N-oxide is associated with hypertension. However, there is a scarcity of literature addressing the role of trimethylamine N-oxide in hypertension pathogenesis. In this review, we discuss the impact of the gut microbiota and gut microbiota dependant trimethylamine N-oxide in the pathogenesis of hypertension. We present evidence from both human and animal studies and further discuss new insights relating to potential therapies for managing hypertension by altering the gut microbiota.

Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function

International Journal of Molecular Sciences

Recent evidence, including massive gene-expression analysis and a wide-variety of other multi-omics approaches, demonstrates an interplay between gut microbiota and the regulation of plasma lipids. Gut microbial metabolism of choline and l-carnitine results in the formation of trimethylamine (TMA) and concomitant conversion into trimethylamine-N-oxide (TMAO) by liver flavin monooxygenase 3 (FMO3). The plasma level of TMAO is determined by the genetic variation, diet and composition of gut microbiota. Multiple studies have demonstrated an association between TMAO plasma levels and the risk of atherothrombotic cardiovascular disease (CVD). We aimed to review the molecular pathways by which TMAO production and FMO3 exert their proatherogenic effects. TMAO may promote foam cell formation by upregulating macrophage scavenger receptors, deregulating enterohepatic cholesterol and bile acid metabolism and impairing macrophage reverse cholesterol transport (RCT). Furthermore, FMO3 may promot...

Nature of Human Gut Microbiome: How do they play in Cardiovascular Disease?

Journal of Cardiovascular Medicine and Cardiology, 2018

Cardiovascular disease is the number one killer of death around the world. Most of the cardiovascular diseases are caused by sedentary life style, bad eating habit, tobacco smoking, high alcohol intake, dyslipidemia and genetic factors .Recently the idea of human microbiome science has emerged in diseases pathogenesis .The human gut is a house of trillions of microbial fl oral. Since a couple of decades ago, there has been interesting insights into the human gut microbiota and have highlighted its increasingly association to cardiovascular (CV) and metabolic diseases. Trimethylamine N-oxide (TMAO), which is a metabolic product from gut microbiota plays a central role in cardiovascular disease pathogenesis. Nature of microbial inhabitants within the host has been noticed by the numbers of scientists and researchers to understand more about the hidden mechanism of diseases pathogenesis including cardiovascular disease, metabolic and autoimmune diseases and it has become a good hope to develop new drug designs to prevent metabolic and cardiovascular disease in near future.

Circulating Trimethylamine N-Oxide Is Associated with Increased Risk of Cardiovascular Mortality in Type-2 Diabetes: Results from a Dutch Diabetes Cohort (ZODIAC-59)

Journal of Clinical Medicine

Trimethylamine N-oxide (TMAO), a novel cardiovascular (CV) disease and mortality risk marker, is a gut microbiota-derived metabolite as well. Recently, plasma concentrations of branched-chain amino acids (BCAA) have been reported to be affected by microbiota. The association of plasma TMAO with CV mortality in Type 2 Diabetes (T2D) and its determinants are still incompletely described. We evaluated the association between plasma BCAA and TMAO, and the association of TMAO with CV mortality in T2D individuals. We used data of 595 participants (mean age 69.5 years) from the Zwolle Outpatient Diabetes project Integrating Available Care (ZODIAC) cohort were analyzed. Plasma TMAO and BCAA were measured with nuclear magnetic resonance spectroscopy. CV mortality risk was estimated using multivariable-adjusted Cox regression models. Cross-sectionally, TMAO was independently associated with BCAA standardized (Std) β = 0.18 (95% Confidence Interval (CI) 0.09; 0.27), p <0.001. During a media...