4D printing of shape memory polymer with continuous carbon fiber (original) (raw)
2023, Progress in Additive Manufacturing
Shape memory polymer composites (SMPCs) have gained attention for their shape memory effects and wide-ranging applications. Understanding the bending shape recovery characteristics of 3D printed SMPCs is crucial for optimizing their performance. This study focuses on investigating the influence of different fiber orientations of continuous carbon fiber (CCF) in thermally stimulated SMPC. By controlling printing parameters and fiber orientation during the 3D printing process, we fabricate tailor-made rectangular composite test specimens. These specimens are subjected to controlled bending above the glass transition temperature of the polymer, inducing temporary deformation. The subsequent shape recovery process is carefully captured through high-speed video. Precise measurements of the bending curvature over time are obtained using the row-by-row image processing technique and analyzed. The shape recovery rate, shape recovery ratio, and shape fixity ratio of the test specimens were evaluated as a function of three CCF layout arrangements as well as fiber infill density embedded in Shape Memory Polymer (SMP) test specimens. The results revealed that the addition of CCF in the polymer matrix has a significant impact on shape memory behavior. Vertically aligned CCF in the SMP matrix improves the shape recovery ratio (92.97% compared to 78.77% of the pure SMP sample), while horizontal alignment of CCF ensures maximum shape fixity ratio (91.78% compared to 66.22% of the pure SMP sample). The cross-aligned CCF sample provides good recovery as well as fixity values. Further, it was observed that the horizontal alignment of CCF yields the fastest recovery performance. The outcome confirms that optimizing the fiber orientation enhances shape memory performance. Also, 40% of fiber infill density had greater shape fixity and overall recovery performance when compared to 30% and 50%. These findings have implications for tailored and high-performance SMPCs in biomedical devices, aerospace components, and robotics. Understanding temporal curvature behavior enables optimizing the design of materials with precise control over shape recovery. This research contributes to the design and optimization of SMPCs for diverse applications.
Related papers
Design, Characterization, and Additive Manufacturing of Shape Memory Composites
2020
Direct Ink Writing (DIW) is an additive manufacturing method that utilizes a reservoir of fluid that is precisely extruded to construct 3-Dimensional (3D) structures from layering 2-Dimensional (2D) patterns. Fluids used in DIW printing can vary from in-situ, UV-cured resins to thermosetting epoxies that are solidified following the printing process. This thesis explores the latter fluid, specifically those epoxies which possess shape memory abilities. The shape memory function allows a solid, printed component to deform elastically when its temperature exceeds the glass transition temperature (T_g). However, shape memory epoxies traditionally lack the necessary fluid qualities for printing. By forming a composite ink and integrating a network of multiwalled carbon nanotubes (MWCNTs) or carbon black within the uncured fluid profile, the resulting multiphase ink can possess the requisite fluid rheology to facilitate 3D printing through the DIW process. This thesis examines the develo...
Curved and Layered Structures, 2021
The influence of a wide temperature range in the glass transition region of a shape memory polymer (SMP) matrix on micro-buckling of the fiber reinforcements in shape memory polymer composites (SMPC) under large bending deformation is described. Analytical expressions to estimate the strain energy, neutral strain surface, critical buckling surface and half wavelength of the buckled fibers in the SMPC are presented based on the minimum energy method. This study considers the reinforced fibers as three-dimensional elastic bodies and the matrix as a temperature stimulated flat plate. A comprehensive study was performed to understand the dynamic temperature behavior of the micro-buckled fibers and corresponding results were validated by previous works in the literature. The effects of fiber volume fraction and thickness of the SMPC plates on the half wavelength are also discussed along with the simultaneous influence of temperature on the parameters computed in the minimum energy analysis.
Fused Filament Fabrication-4D-Printed Shape Memory Polymers: A Review
Polymers
Additive manufacturing (AM) is the process through which components/structures are produced layer-by-layer. In this context, 4D printing combines 3D printing with time so that this combination results in additively manufactured components that respond to external stimuli and, consequently, change their shape/volume or modify their mechanical properties. Therefore, 4D printing uses shape-memory materials that react to external stimuli such as pH, humidity, and temperature. Among the possible materials with shape memory effect (SME), the most suitable for additive manufacturing are shape memory polymers (SMPs). However, due to their weaknesses, shape memory polymer compounds (SMPCs) prove to be an effective alternative. On the other hand, out of all the additive manufacturing techniques, the most widely used is fused filament fabrication (FFF). In this context, the present paper aims to critically review all studies related to the mechanical properties of 4D-FFF materials. The paper p...
Structural Performance and Photothermal Recovery of Carbon Fibre Reinforced Shape Memory Polymer
Composites Science and Technology, 2018
The shape-memory polymers (SMPs) have an interesting capability of keeping a temporary shape and then recovering the original shape when subject to a particular external stimulus. However, due to SMP's relatively low mechanical properties, the use of SMP in wider range of engineering applications is limited. As such SMP's needs to be reinforced before use in engineering applications. This paper presents the mechanical properties, thermomechanical characteristics, photothermal behaviour and light activation of 0/90 woven carbon fibre reinforced shape memory epoxy composite (SMPC) made out of prepreg material. Prepreg is widely used manufacturing technique for large-scale engineering applications. The experimental results have demonstrated that the structural performance of the SMP has
Shape Memory Polymers and Composites in Aerospace Applications
International journal of engineering research and technology, 2020
Shape memory polymers (SMP) and SMP based composites are typical smart materials, which can transform from their temporarily fixed configuration to their original configuration under external stimuli. Shape memory effect is an intrinsic property of polymers and changes according to different molecular weight and components of different polymers. They have inherent advantages like lightweight, large recoverable deformation capability, biocompatibility, etc. This paper reviews status of SMP nanocomposites, SMP filler composites in aerospace applications. We will discuss about the materials and structures which could be used and also about the general mechanism of SMP’s and their composites, which have great potential for novel aerospace applications development.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.