Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review (original) (raw)

Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor

Molecular and cellular probes, 2018

Staphylococcus aureus is a gram-positive and opportunistic pathogen that is one of the most common causes of nosocomial infections; therefore, its rapid diagnosis is important and valuable. Today, the use of nanoparticles is expanding due to their unique properties. The purpose of the present study is the determination of S. aureus by a colorimetric method based on gold nanoparticles (AuNPs). Firstly, S. aureus was cultured on both LB media (broth and agar) and their chromosomal DNA was extracted. Afterwards, primers and biosensor were designed based on Protein A sequence data in the gene bank. PCR assay was performed under optimal conditions and the PCR product was electrophoresed on 2-percent agarose gel. The synthesized biosensors were conjugated with AuNPs and, eventually, a single-stranded genome was added to the conjugated AuNPs and hybridization was performed. The results were evaluated based on color change detected by the naked eye, optical spectrophotometry, and transient ...

Enhanced sensitivity and efficiency of detection of Staphylococcus aureus based on modified magnetic nanoparticles by photometric systems

Artificial Cells, Nanomedicine, and Biotechnology, 2020

Staphylococcus aureus is an important infectious factor in the food industry and hospital infections. Many methods are used for detecting bacteria but they are mostly time-consuming, poorly sensitive. In this study, a nano-biosensor based on iron nanoparticles (MNPs) was designed to detect S. aureus. MNPs were synthesized and conjugated to Biosensors. Then S. aureus was lysed and nano-biosensor (MNP-TiO 2-AP-SMCC-Biosensors) was added to the lysed bacteria. After bonding the bacterial genome to the nano-biosensor, MNPs were separated by a magnet. Bacterial DNA was released from the surface of nano-biosensor and researched by Nano-drop spectrophotometry. The results of SEM and DLS revealed that the size of MNPs was 20-25 nm which increased to 38-43 nm after modification and addition of biosensors. The designed nano-biosensor was highly sensitive and specific for the detection of S. aureus. The limit of detection (LOD) was determined as 230 CFU mL À1. There was an acceptable linear correlation between bacterial concentration and absorption at 3.7 Â 10 2-3.7Â 10 7 whose linear diagram and regression was Y ¼ 0.242X þ 2.08 and R 2 ¼ .996. Further, in the presence of other bacteria as a negative control, it was absolutely specific. The sensitivity of the designed nano-biosensor was investigated and compared through PCR.

Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus

Staphylococcus aureus (S. aureus) is one of the most ubiquitous pathogens in public healthcare worldwide. It holds great insterest in establishing robust analytical method for S. aureus. Herein, we report a S. aureus-specific recognition element, isolated from phage monoclone GQTTLTTS, which was selected from f8/8 landscape phage library against S. aureus in a high-throughput way. By functionalizing cysteamine (CS)-stabilized gold nanoparticles (CS-AuNPs) with S. aureus-specific pVIII fusion protein (fusion-pVIII), a bifunctional nanoprobe (CS-AuNPs@fusion-pVIII) for S. aureus was developed. In this strategy, the CS-AuNPs@fusion-pVIII could be induced to aggregate quickly in the presence of target S. aureus, resulting in a rapid colorimetric response of gold nanoparticles. More importantly, the as-designed probe exhibited excellent selectivity over other bacteria. Thus, the CS-AuNPs@fusion-pVIII could be used as the indicator of target S. aureus. This assay can detect as low as 19 CFU mL À 1 S. aureus within 30 min. Further, this approach can be applicable to detect S. aureus in real water samples. Due to its sensitivity, specificity and rapidness, this proposed method is promising for on-site testing of S. aureus without using any costly instruments.

Designing advanced nanomaterials for next generation in vitro diagnostics: development of optical and electrochemical biosensors based on hollow auag nanoparticles for determination of viral and bacterial infections

2019

En esta tesis doctoral. El dibujo racional de nanomateriales avanzados con propiedades controladas se aplico para su empleo en biosensing, y condujo al desarrollo de dos plataformas diagnosticas para la determinacion de infecciones virales y bacterianas. Primero, se desarrollo un metodo sintetico altamente reproducible y robusto para la produccion de nanoshells de una aleacion AuAg monodispersas basado en remplazamiento galvanico. El protocolo descrito permite el controlo preciso sobre la morfologia de las particulas, en terminos de grosor de la capa externa y de tamano del vacio interior, la composicion relativa y distribucion topologica de los metales noble constituyentes, y su rugosidad y porosidad superficial. Esta predictibilidad sintetica, testeada sobre un rango de tamanos, se ha conseguido a traves de un estudio sistematico de la relacion entre de cada reactivo, juntos a una detallada caracterizacion de la composicion y estructura del material con diferentes tecnicas. Ademas...

Human Serum Albumin Stabilized Gold Nanoclusters as Selective Luminescent Probes for Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus

Analytical Chemistry, 2012

In this work, human serum albumin (HSA) stabilized gold nanoclusters (HSA-AuNCs) with reddish photoluminescence were used as sensing probes for pathogenic bacteria including Enterobacter cloacae, Escherichia coli J96, Pseudomonas aeruginosa, pandrug-resistant Acinetobacter baumannii (PDRAB), Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Streptococcus pyogenes, and vancomycin-resistant Enterococcus faecalis (VRE). We discovered that HSA-AuNCs have unique affinity with S. aureus and MRSA. In addition to demonstrating the selective sensing ability of HSA-AuNCs toward S. aureus and MRSA, the binding peptide motifs identified from HSA-AuNCs were characterized by mass spectrometry. The identified binding peptides were further used as the reducing and stabilizing agents for generation of peptide-bound AuNCs (Pep-AuNCs). The generated Pep-AuNCs were demonstrated to have the binding affinities with S. aureus and MRSA.

Development of nanoparticle-based optical sensors for pathogenic bacterial detection

Journal of nanobiotechnology, 2017

Pathogenic bacteria contribute to various globally important diseases, killing millions of people each year. Various fields of medicine currently benefit from or may potentially benefit from the use of nanotechnology applications, in which there is growing interest. Disease-related biomarkers can be rapidly and directly detected by nanostructures, such as nanowires, nanotubes, nanoparticles, cantilevers, microarrays, and nanoarrays, as part of an accurate process characterized by lower sample consumption and considerably higher sensitivity. There is a need for accurate techniques for pathogenic bacteria identification and detection to allow the prevention and management of pathogenic diseases and to assure food safety. The focus of this review is on the current nanoparticle-based techniques for pathogenic bacterial identification and detection using these applications.

Detection of pathogenic Staphylococcus aureus bacteria by gold based immunosensors

Mikrochimica Acta, 2008

We describe the elaboration of ultra-sensitive immunosensors, to detect the bacterial pathogen Staphylococcus aureus. We utilized commercially available polyclonal anti-S. aureus antibody as receptor. Immunosensors were elaborated by building a self-assembled monolayer (SAM) of thiolamine onto planar gold-coated sensor chips. Then, Protein A was covalently linked to the thiolated SAM using glutaraldehyde as cross-linking agent. After a blocking step by Bovine Serum Albumin (BSA), the antibody was immobilized by affinity to Protein A. This step-by-step construction was monitored by Polarization Modulation Reflection Absorption Infrared Spectroscopy (PM-RAIRS) and Quartz Crystal Microbalance with Dissipation (QCM-D). In a first stage, the parameters of immunosensor elaboration were optimized using a model rabbit IgG. The accessibility of receptors and the homogeneity of their distribution were checked by PM-RAIRS, QCM-D, and by immuno-gold scanning electron microscopy. Then, the specific rabbit anti-S. aureus antibody was immobilized and the resulting sensing layer was applied to the detection of the pathogen target. Independent detection of bacteria immobilized on the sensors by fluorescent imaging allowed validation of the specificity of recognition toward the pathogen as well as a quantitative response of the sensor. Using PM-RAIRS as transducing technique allowed us to enhance sensitivity and reach a very competitive detection level (105 CFU mL−1).