Stochastic 2D hydrodynamical type systems: Well posedeness and large deviations (original) (raw)
Abstract
We deal with a class of abstract nonlinear stochastic models, which covers many 2D hydrodynamical models including 2D Navier-Stokes equations, 2D MHD models and the 2D magnetic Bénard problem and also some shell models of turbulence. We state the existence and uniqueness theorem for the class considered. Our main result is a Wentzell-Freidlin type large deviation principle for small multiplicative noise which we prove by a weak convergence method. Keywords Hydrodynamical models • MHD • Bénard convection • Shell models of turbulence • Stochastic PDEs • Large deviations The research of the second named author is partially supported by the research project BMF2003-01345.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (36)
- Barbato, D., Barsanti, M., Bessaih, H., Flandoli, F.: Some rigorous results on a stochastic Goy model. J. Stat. Phys. 125, 677-716 (2006)
- Barbu, V., Da Prato, G.: Existence and ergodicity for the two-dimensional stochastic magneto- hydrodynamics equations. Appl. Math. Optim. 56(2), 145-168 (2007)
- Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20, 39-61 (2000)
- Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36, 1390-1420 (2008)
- Capinsky, M., Gatarek, D.: Stochastic equations in Hilbert space with application to Navier-Stokes equations in any dimension. J. Funct. Anal. 126, 26-35 (1994)
- Cerrai, S., Röckner, M.: Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction terms. Ann. Probab. 32, 1100-1139 (2004)
- Chepyzhov, V., Titi, E., Vishik, M.: On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier-Stokes system. Discrete Contin. Dyn. Syst. 17, 481-500 (2007)
- Cheskidov, A., Holm, D., Olson, E., Titi, E.: On a Leray-α model of turbulence. Proc. R. Soc. Lond. Ser. A 461, 629-649 (2005)
- Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical systems: support theorem. arXiv: 0907.2100v1
- Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press, Chicago (1988)
- Constantin, P., Levant, B., Titi, E.S.: Analytic study of the shell model of turbulence. Physica D 219, 120-141 (2006)
- Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)
- Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, New York (2000)
- Duan, J., Millet, A.: Large deviations for the Boussinesq equations under random influences. Stoch. Process. Appl. 119(6), 2052-2081 (2009)
- Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley- Interscience, New York (1997)
- Duvaut, G., Lions, J.L.: Inéquations en thermoélasticité et magnéto hydrodynamique. Arch. Ration. Mech. Anal. 46, 241-279 (1972)
- Ferrario, B.: The Bénard Problem with random perturbations: Dissipativity and invariant measures. Nonlinear Differ. Equ. Appl. 4, 101-121 (1997)
- Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 102, 367-391 (1995)
- Foias, C., Manley, O., Temam, R.: Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Anal. 11, 939-967 (1987)
- Galdi, G.P., Padula, M.: A new approach to energy theory in the stability of fluid motion. Arch. Ration. Mech. Anal. 110, 187-286 (1990)
- Katz, N.H., Pavlović, N.: Finite time blow-up for a dyadic model of the Euler equations. Trans. Am. Math. Soc. 357, 695-708 (2005)
- Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990)
- Ladyzhenskaya, O., Solonnikov, V.: Solution of some nonstationary magnetohydrodynamical prob- lems for incompressible fluid. Trudy Steklov Math. Inst. 59, 115-173 (1960) (in Russian)
- Leray, J.: Essai sur le mouvement d'un fluide visqueux emplissant l'espace. Acta Math. 63, 193-248 (1934)
- Liu, W.: Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim. (2009). doi:10.1007/s00245-009-9072-2. arXiv:0801.1443v4
- Lvov, V.S., Podivilov, E., Pomyalov, A., Procaccia, I., Vandembroucq, D.: Improved shell model of turbulence. Phys. Rev. E 58, 1811-1822 (1998)
- Manna, U., Sritharan, S.S., Sundar, P.: Large deviations for the stochastic shell model of turbulence. arXiv:0802.0585v1
- Menaldi, J.L., Sritharan, S.S.: Stochastic 2-D Navier-Stokes equation. Appl. Math. Optim. 46, 31-53 (2002)
- Moreau, R.: Magnetohydrodynamics. Kluwer, Dordrecht (1990)
- Ohkitani, K., Yamada, M.: Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence. Prog. Theor. Phys. 89, 329-341 (1989)
- Ren, J., Zhang, X.: Freidlin-Wentzell large deviations for stochastic evolution equations. J. Funct. Anal. 254, 3148-3172 (2008)
- Röckner, M., Schmuland, B., Zhang, X.: Yamada-Watanabe theorem for stochastic evolution equa- tions in infinite dimension. Condens. Matter Phys. 11(2), 247-259 (2008)
- Sermange, M., Temam, R.: Some mathematical questions related to MHD equations. Commun. Pure Appl. Math. 36, 635-664 (1983)
- Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise. Stoch. Process. Appl. 116, 1636-1659 (2006)
- Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edn. SIAM, Philadel- phia (1995)
- Vishik, M.I., Komech, A.I., Fursikov, A.V.: Some mathematical problems of statistical hydromechan- ics. Russ. Math. Surv. 34(5), 149-234 (1979)