Sensitivity Analysis of Ex-Vessel Corium Coolability Models in MAAP5 Code for the Prediction of Molten Corium–Concrete Interaction after a Severe Accident Scenario (original) (raw)
A postulated progressing severe accident scenario has been simulated using MAAP5 code with the focus on ex-vessel cooling of molten corium in the reactor cavity. Various parameters associated with the prediction of molten corium–concrete interaction (MCCI) are identified. Accordingly, a sensitivity analysis is performed to assess the impact of these parameters on the predicted cavity floor erosion depth during this MCCI postulated accident. The sensitivity index of each variable parameter is determined using the Cotter indices method and Sobol′ indices method. At the early stage of the accident, the predicted cavity floor erosion depth is found to be highly sensitive to the downward heat transfer coefficient parameter with Cotter and Sobol′ indices of 94% and 50%, respectively. At the late phase of the accident, however, the cavity floor erosion depth becomes sensitive to melt eruption (Cotter index of 40%), water ingression (Cotter index of 13%), and particulate bed (Cotter index o...