Hurricanes and coral reefs: The intermediate disturbance hypothesis revisited (original) (raw)
Related papers
Hurricanes and Caribbean Coral Reefs: Impacts, Recovery Patterns, and Role in Long-Term Decline
Ecology, 2005
The decline of corals on tropical reefs is usually ascribed to a combination of natural and anthropogenic factors, but the relative importance of these causes remains unclear. In this paper, we attempt to quantify the contribution of hurricanes to Caribbean coral cover decline over the past two decades using meta-analyses. Our study included published and unpublished data from 286 coral
Global Change Biology, 2008
Relatively little is known about how the future effects of climatic change, including increases in sea level, temperature and storm severity and frequency, will impact on patterns of biodiversity on coral reefs, with the notable exception of recent work on corals and fish in tropical reef ecosystems. Sessile invertebrates such as ascidians, sponges and bryozoans occupying intertidal rubble habitats on coral reefs contribute significantly to the overall biodiversity and ecosystem function, but there is little or no information available on the likely impacts on these species from climate change. The existing strong physical gradients in these intertidal habitats will be exacerbated under predicted climatic change. By examining the distribution and abundance of nonscleractinian, sessile invertebrate assemblages exposed to different levels of wave action and at different heights on the shore around a coral reef, we show that coral reef intertidal biodiversity is particularly sensitive to physical disturbance. As physical disturbance regimes increase due to more intense storms and wave action associated with global warming, we can expect to see a corresponding decrease in the diversity of these cryptic sessile assemblages. This could impact negatively on the future health and productivity of coral reef ecosystems, given the ecosystem services these organisms provide.