Coral bleaching and disease combine to cause extensive mortality on reefs in US Virgin Islands (original) (raw)

Smith TB, Nemeth RS, Blondeau J, Calnan JM, Kadison E, Herzlieb S (2008) Assessing coral reef health across onshore to offshore stress gradients in the US Virgin Islands. Marine Pollution Bulletin 56:1983-1991

Managing the effects of anthropogenic disturbance on coral reefs is highly dependant on effective strategies to assess degradation and recovery. We used five years of field data in the US Virgin Islands to investigate coral reef response to a potential gradient of stress. We found that the prevalence of old partial mortality, bleaching, and all forms of coral health impairment (a novel category) increased with nearshore anthropogenic processes, such as a five-fold higher rate of clay and silt sedimentation. Other patterns of coral health, such as recent partial mortality, other diseases, and benthic cover, did not respond to this potential gradient of stress or their response could not be resolved at the frequency or scale of monitoring. We suggest that persistent signs of disturbance are more useful to short-term, non-intensive (annual) coral reef assessments, but more intensive (semi-annual) assessments are necessary to resolve patterns of transient signs of coral health impairment.

Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

Risk analyses indicate that more than 90% of the world’s reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under “business-asusual” climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove–coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality, and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangroveshaded and exposed (unshaded) areas. Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.

Coral Diseases in the Caribbean

Coral reefs are the jewels of the tropical oceans. They boast the highest diversity of all marine ecosystems, aid in the development and protection of other important, productive coastal marine communities, and have provided millions of people with food, building materials, protection from storms, recreation and social stability over thousands of years, and more recently, income, active pharmacological compounds and other benefits. These communities have been deteriorating rapidly in recent times. The continuous emergence of coral reef diseases and increase in bleaching events caused in part by high water temperatures among other factors underscore the need for intensive assessments of their ecological status and causes and their impact on coral reefs.

Extended geographic distribution of several Indo-Pacific coral reef diseases

Other than coral bleaching, few coral diseases or diseases of other reef organisms have been reported from Japan. This is the first report of lesions similar to Porites ulcerative white spots (PUWS), brown band disease (BrB), pigmentation response (PR), and crustose coralline white syndrome (CCWS) for this region. To assess the health status and disease prevalence, qualitative and quantitative surveys (3 belt transects of 100 m2 each on each reef) were performed in March and September 2010 on 2 reefs of the Ginowan-Ooyama reef complex off Okinawa, and 2 protected reefs off Zamani Island, in the Kerama Islands 40 km west of Okinawa. Overall, mean (±SD) disease prevalence was higher in Ginowan-Ooyama (9.7 ± 7.9%) compared to Zamami (3.6 ± 4.6%). Porites lutea was most affected by PUWS at Ooyama (23.1 ± 10.4 vs. 4.5 ± 5.2%). White syndrome (WS) mostly affected Acropora cytherea (12. 5 ± 18.0%) in Zamami and Oxipora lacera (10.2 ± 10%) in Ooyama. Growth anomalies (GA) and BrB were only observed on A. cytherea (8.3 ± 6.2%) and A. nobilis (0.8%) at Zamami. Black band disease affected Pachyseris speciosa (6.0 ± 4.6%) in Ooyama only. Pigmentation responses (PR) were common in massive Porites in both localities (2.6 ± 1.9 and 5.6 ± 2.3% respectively). Crustose coralline white syndrome (CCWS) was observed in both localities. These results significantly expand the geographic distribution of PUWS, BrB, PR and CCWS in the Indo-Pacific, indicating that the northernmost coral reefs in the western Pacific are susceptible to a larger number of coral diseases than previously thought.

Changes in Caribbean coral disease prevalence after the 2005 bleaching event

Bleaching events and disease epizootics have increased during the past decades, suggesting a positive link between these 2 causes in producing coral mortality. However, studies to test this hypothesis, integrating a broad range of hierarchical spatial scales from habitats to distant localities, have not been conducted in the Caribbean. In this study, we examined links between bleaching intensity and disease prevalence collected from 6 countries, 2 reef sites for each country, and 3 habitats within each reef site (N = 6 × 2 × 3 = 36 site–habitat combinations) during the peak of bleaching in 2005 and a year after, in 2006. Patterns of disease prevalence and bleaching were significantly correlated (Rho = 0.58, p = 0.04). Higher variability in disease prevalence after bleaching occurred among habitats at each particular reef site, with a significant increase in prevalence recorded in 4 of the 10 site–habitats where bleaching was intense and a non-significant increase in disease prevalence in 18 out of the 26 site–habitats where bleaching was low to moderate. A significant linear correlation was found (r = 0.89, p = 0.008) between bleaching and the prevalence of 2 virulent diseases (yellow band disease and white plague) affecting the Montastraea species complex. Results of this study suggest that if bleaching events become more intense and frequent, disease-related mortality of Caribbean coral reef builders could increase, with uncertain effects on coral reef resilience